|

Xerox Real-Time Batch Monitor (RBM)

Xerox Data Systems

EROXEROXEROXEROXEROXEROXEROX
DXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXEIR

ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXERC

OXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXE
KEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERO)
OXEROXEROXEROXEROXEROXEROXER(
ROXEROXEROXEROXEROXEROXEROXET:
EROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
-ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROX [

Xerox Data Systems

701 South Aviation Boulevard
| Segundo, California 90245
213 679-4511

Xerox Real-Time Batch Monitor (RBM]

Sigma 2/3 Computers

User's Guide

FIRST EDITION

90 17 85A

January 1972

Price: $4.75

© 1972, Xerox Corporation

FROX

Printed in U.S.A,

The specifications of the software system described in this publication are subject to change without notice.

NOTICE

This publication is the first edition of the Xerox Real-Time Batch Monitor (RBM)/RT,BP User's Guide for Sigma 2/3
computers, Publication Number 90 17 85A (dated February, 1972). This manual reflects the EO0 version of the

RBM system.

RELATED PUBLICATIONS

Title

Xerox Sigma 2 Computer/Reference Manual

Xerox Sigma 3 Computer/Reference Manual

Xerox Real-Time Batch Monitor (RBM)/RT,BP Reference Manual
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual
Xerox Real-Time Batch Monitor (RBM)/System Technical Manual
Xerox Extended Symbol/LN,OPS Reference Manual

Xerox Symbol/LN,OPS Reference Manual

Xerox Basic FORTRAN and Basic FORTRAN IV/LN Reference Manual
Xerox Basic FORTRAN/OPS Reference Manual

Xerox Basic FORTRAN IV/OPS Reference Manual

Xerox FORTRAN/Library Technical Manual

Xerox ANS FORTRAN IV/LN Reference Manual

Xerox ANS FORTRAN IV/OPS Reference Manual

Publication No.
90 09 64
90 1592
90 10 37
90 15 55
90 11 53
90 10 52
90 10 51
90 09 67
90 10 61
9015 25
90 10 36
90 18 06

90 18 07

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,

RT - real-time, SM - system management, TS - time=sharing, UT - utilities.

The availability or performance of some features may

depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

PREFACE

THE RBM OPERATING SYSTEM

Real-Time Batch Monitor System
Real-Time Task

Foreground Programs

Background Jobs

The Monitor

Memory Allocation and Management
Concurrent Foreground/Background

Operation
Checkpointing

Overlay Program

Response Time

Job Stream Summary

HOW TO COMPILE AND LOAD FORTRAN
JOBS

Compilation with Source Listing

Compile Main Program with Subprograms
Execute Object Module from Card Input
Compile and Execute FORTRAN Program
Compile, Load, and Go from Permanent

GO File

Compile, Load, and Go from Permanent

OV File

Compile and Execute in Foreground Area
How to Use 026 Source and Data Decks

HOW TO ASSEMBLE AND LOAD EXTENDED
SYMBOL JOBS

Extended Symbol Assemblies

Assemble, Load and Go

Load and Go from Permanent GO File
Modify an Assembly in a Permanent
GO File

Assemble, Load, and Go from Permanent
OV File

Assemble in Batch Mode

Assemble and Execute in Foreground Area

HOW TO CREATE AND MANIPULATE FILES

How to Create a File

How to Delete a File

How to Truncate a File

How to Squeeze a RAD Area

How to Access a File

CONTENTS

PO WNN —~

[o N e NN IS, IS, |

10
10

— N

15
17
18 7.

20

20
20
22

23

24
25
26

28

29
31
31
32

How to Create a Program File

Sequential Access

Random Access

Creation Procedures

How to Create a New Library

How to Add a Library Routine
How to Delete a Library Routine

How to Recover Unused Library Space
How to Replace a Library Module

HOW TO BUILD AN OVERLAY PROGRAM

Communication between Segments
FORTRAN Segment Calls

Assembly Segment Calls
Segment Communication Using Common
Areas

Blank COMMON

Labeled COMMON

How to Read a Load Map

Loader Process Summary

HOW TO USE MONITOR SERVICE
ROUTINES

HOW TO USE UTILITY

How to Copy and Verify

How to Copy Card Reader Input to Line
Printer

How to Copy and Verify from a RAD File

to Paper Tape
How to Copy Magnetic Tape to Magnetic
Tape

How to Copy a File to Line Printer
How to Prestore Control Commands
How to Use Utility Dump

How to Dump a Magnetic Tape

How to Dump a RAD File
How to Use the Object Module Editor

How to List Object Modules from GO File
How to Update Object Modules from Cards____

How to Use the Record Editor

How to List a Specified File from Magnetic

Tape
How to Modify a Source Module to a RAD
File

How to Use the Sequence Editor

How to Generate and Sequence a File on
Magnetic Tape

How to Update and Resequence Two Files

oh Magnetic Tape

34

36
37
38
39
39

41
48
48
49
49
49
49

50
53

55

59
59
60
61
62
62
63
65
65
66
66
67
69
70

70
71

72

73

8. HOW TO INTERFACE ANS FORTRAN IV AND 13. HOW TO CONNECT TASKS TO INTERRUPTS 95

EXTENDED SYMBOL SUBROUTINES 75
General Concepts and Conventions 75
External References 75 14. HOW TO ATTAIN REENTRANCY IN ASSEMBLY
Temporary Stack 75 LANGUAGE SUBROUTINES 96
Floating Accumulator 75
Complex Accumulator 76
Blank COMMON Storage 76
FORTRAN 76 15. HOW TO WRITE AN ASSEMBLY LANGUAGE
Extended Symbol 76 INTERRUPT HANDLER 99
Complex Accumulator 76
Blank COMMON Storage 76
FORTRAN 76
Extended Symbol . 76 16. HOW TO WRITE AND EXECUTE A REAL-TIME
Named COMMON Storage 76 PROGRAM 103
FORTRAN 76
Extended Symbol 76
Coding Extended Symbol Routines for Calls
from FORTRAN 7 17. HOW TO CREATE A FORTRAN REAL-TIME
Standard Calling Sequence 77 SYSTEM 107
Argument Transfer Routines 78
Subprogram Ex”. " 78 Reentrancy 107
Temp Stack Definition 78 Task 107
Argument Checking 79 BZS' s
. . . sic Structure 107
Calling Math Library Routines from Extended Initializat
nitialization 108
Symbol 79 Subroutine Sharin 109
Math Routines 80 . 0. 9 .
Arithmetic Routines 80 Public Library FORTRAN Routines — 109
9. HOW TO USE STANDARD PROCEDURE 18. HOW TO DEBUG ASSEMBLY LANGUAGE
(S2) FILES 81 PROGRAMS 110
What May Be Stored inan S2File_ 8] How to Define an Insertion Block 110
How to Create an S2 File 81 How to Insert Snapshotsand Code 110
How to Debug a Foreground Program 112
How to Use SNAME and @NAME 113
Requirements for $NAME 113
10. HOW TO REDUCE ASSEMBLY LANGUAGE Requirements for @NAME 115
HARDWARE REQUIREMENTS 85
Coping with Existing Resources 85
S File Himination 8 19. HOW TO ASSIGN AND USE DEVICE
X3 File Elimination 86 OPERATIONAL LABELS 117
S2 File Elimination 86
Redundant File Assignments 87
Coding for Existing Resources 87
20. HOW TO PATCH RBM 119
11. HOW TO USE HARDWARE INTERRUPTS 88
21. HOW TO SAVE AND RESTORE AN RBM
Purpose of Hardware Interrupts 88 SYSTEM 121
Summary of Hardware Interrupt Features 89
Interrupt Task Scheduling 90 How to Create a Rebootable Save Tape 121
Software Scheduling of Subtasks 90 Booting an RBM Save Tape 121
RBM Organization 91 Selectively Restoring Areas from a
Rebootable Save Tape 122
How to Save RBM System Files 123

12. HOW TO CREATE A TASK CONTROL BLOCK 93 Restoring RBM System Files 123

10.

11,
12.
13.
14.

15.
16.
17.
18.

20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.

FIGURES

Compile with Source Listing and Suppressed

Binary Output

FORTRAN Compilation with Subprograms, Binary

Output to BO Device, and Source and
Object Listing to LO Device

Object Program Input from Card Reader for
Execution

FORTRAN Load and Go Job

Load and Go Sequence

Compile, Load, and Go from User-Defined
GO File

Compile, Load, and Go from Permanent
OV File

Compile, Load, and Execute in Foreground
Area

Job Setup with 026 Source and Data

Assemble Single Program with Listed Output
to LO Device

Assemble, Load, and Go

Load and Go from User-Defined GO File
Assembly Update from Permanent GO File

Assemble, Load, and Go from Permanent

OV File

Assemble in Batch Mode

Load and Execute in Foreground Area

Create a RAD File

Deleting a File

Truncating a File

Squeezing a RAD Area

Output a RAD Map

RAD Area Map Example

File Creation with Specific Granule Allotment ___

File Creation with Granule Over-Allotment

Input Library Files

Add a Library Routine

Delete a Library Routine

Library Space Recovery

Replace Library Object Module

Load Map Example
Core Layout During Loading

Monitor Service Routine Examples

Copy Card Input to Line Printer

Copy and Verify File from RAD Area to

Paper Tape

10

11
12
13

24
25
27
30
31
32
32
33
33
35
35
37
38
38
39
40
51
54
56
60

61

35.

36.

37.

38.
39.
40.
41.

42.
43.

45,

46.

47.
48.
49.
50.
51.
52.
53.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Copy and Verify Magnetic Tape to Magnetic

Tape 62
Copy LO File to Line Printer 63
Verify Card Deck and Paper Tape with

Forced Prestore 64
Dump a Magnetic Tape 65
Dump Sequential AccessRADFile 65
List Object Module fromRAD File____ 67
Update Object Modules from Card Reader to

Magnetic Tape 67
OMEDIT Update Example 69
List Specific File for Magnetic Tape 70
Update Source Records in Source Module 71
Generate and Sequence a File on Magnetic

Tape 72
Update and Resequence Two Magnetic Tape

Files 73

Save Instruction Procedures During SYSLOAD___ 82

Create an S2 File 82
Assemblies Using S2 File 83
RBM Hardware Priority Interupt Levels 92
Reentrant Subroutine Calling Example 97
Temp Stack Usage Example 98
Interrupt Handler Source Listing_— 99
Interrupt Handler Assembly Listing_— 100
Real-Time Task Example, Checkpoint Call

and Exit 103
Real-Time Task Example, Restart Background —__ 103

Deck Example for Loading and Executing
Real-Time Tasks 104

Sample Real-Time FORTRAN System
Schematic 107

Overlay Loader Controls for Sample Real-Time

FORTRAN System 108

Example, Background Conditional Snapshot
with Two Code Insertions 110

Foreground Conditional Snapshot with Two

Code Insertions 112
Foreground Debug Example Using $NAME 114
Background Debug Example Using @NAME 115
Hex Correction Input Example 120

vi

PREFACE

The RBM User's Guide explains how to use some of the more basic and commonly required features of the RBM
operating system. It is to be used with, but does not supplant, the RBM/RT, BP Reference Manual, 90 10 37.1 The
writing style is informal, and technical terminology is avoided wherever possible for the benefit of the new RBM user.

The primary intent of the User's Guide is to assist new users in getting their first programs on the RBM system with a
minimum of study. No attempt has been made to provide comprehensive examples for utilizing every feature in the
RBM system. Your understanding of this manual will be improved if you are already partly familiar with the contents
of the RBM Reference Manual, although this is not strictly necessary. One assumption that has been made however,
is that you have at least a basic understanding of one of the programming languages that operate under RBM (i.e.,

ANS FORTRAN IV or Extended Symbol).

The User's Guide illustrates the necessary interface between your program and the operating system's services through
a series of job examples and short discussions of specific applications. The examples generally present the simplest
case for each application. Once these are thoroughly understood, the use of more sophisticated options, their re-
lationships fo one another, and the techniques for implementing them will be more readily apparent.

An effort has been made to organize the text so that experienced real -time programmers can directly access topics
of immediate interest. A study of the Table of Contents should enable you to go directly to such relevant items and
skip through other material already familiar to you.

In reading the User's Guide, you will probably notice that some definitions and several other items of information
are repeated in several places. This repetition is intentional. Its purpose is to reenforce your understanding of cer-
tain basic terms and concepts that will make the learning of more complex facets of the system an easier task.

A full understanding of the material in this manual will not, in itself, make you an expert in utilizing all the capa-
bilities of the RBM system. Further study of the RBM Reference Manual and some experience in the writing,
checkout, and running of programs will be necessary. When going on to an in-depth study of the RBM Reference
Manual and related manuals, there is a simple technique that may be used to help you learn new features of the sys-
tem. The technique is not to study each unfamiliar feature with respect to its relationship to other parts of the sys-
tem (whose significance may also be slightly hazy), but rather to key each item directly to some real or imaginary
program. You can do this by asking yourself the following questions, as appropriate:

1. Why would I want it for my program and what will it do?
2. How do I use it?
3. If lcan't use it, why not?
4. Is it a service I must request for myself, or does the system provide it automatically ?
5. What are its possible side effects ?
6. Is there another, perhaps better, way that I can accomplish the same thing?
Such a program-oriented approach to learning new features is less confusing, and will eventually lead to a rec-

ognition of the relationships between system components (much of the material in the RBM User's Guide was prepared
by using this same study technique).

"The User's Guide contains a number of references to appropridte sections of the RBM/RT,BP Reference Man-
val, 90 10 37. For purposes of brevity, the title of that manual has been shortened to "RBM Reference Manual "
in all such references.

If you are unfamiliar with the RBM system and have not had an opportunity to attend formal or informal training
classes, it may be useful to review the available RBM documentation. By placing each manual in its proper con-
text in terms of relevance to your own programming efforts, such a review may suggest general guidelines for further
study and the priorities of such study.

e RBM/RT,BP Reference Manual, 90 10 37: This manual is addressed to all personnel within an RBM instal-
lation. It is the primary reference for all resources and services provided by the RBM system and gives
detailed descriptions of each feature with explicit instructions for utilizing them. Since FORTRAN users
commonly call Monitor services indirectly through the FORTRAN library, the areas of immediate interest
to the FORTRAN programmer will be the sections dealing with the background processors, with special em-
phasis on their control command structure: Monitor, RAD Editor, Overlay Loader, and Utility Processor.
The sections on operator communication (unsolicited key~ins) and the Public Library will also be per-
tinent. Assembly language users, in addition o the items above, will require a knowledge of the Monitor
service routines and 1/O sections of the manual, since these users request Monitor services directly in their
code. Real-time programmers, both assembly language and FORTRAN users, will need to study the real -
time programming section (assembly language users should give some emphasis to the Task Control Block
subsection). The section on System Generation will be of primary interest to the installation's system pro-
grammers. The Standard Object Language appendix will usually be of interest only to those engaged in
writing their own language processors and to systems programmers. The RBM Reference Manual is not in-
tended to be a tutorial text. It is a feature oriented and logically organized approach to the system, as
opposed to the User Guide's job oriented approach.

o RBM/OPS Reference Manual, 90 15 55: This manual is addressed to programmers/operators working at the
console. Tt is basically a digest of operations and diagnostic features abstracted from the RBM Reference
Manual and is organized in alphabetical sequences, rather than logical, for fast reference when corrective
action is required while running a job. The RBM/OPS Manual confines itself to control command formats,
operator key-ins, various diagnostic and warning messages, and some peripheral device considerations and
data switch settings.

e RBM/System Technical Manual, 90 11 53: This manual is addressed to system programmers and analysts
who are concerned with the internal structure of the RBM system for maintenance purposes. It is to be used
in conjunction with the system listings supplied to each RBM installation, and the manual is essentially a
"road map" through the RBM listings. Generally speaking, this manual has limited value or interest to ap-
plications programmers.

e Sigma 2 or 3 Computer Reference Manuals, 90 09 64 and 90 15 92: These manuals (whichever is pertinent)
are addressed to all RBM users, but have particular relevance to real -time users because of the descriptions
of the hardware interrupt structure. Of special importance to assembly language users are the sections on
the machine instruction set and I/O, since these users generally are "closer to the machine" than FORTRAN
users.

The programming language manuals listed in "Related Publications" include information on the language processor
interface with RBM. (FORTRAN/RBM interface will be found in the appropriate FORTRAN Operations Manual.)

System programmers, real=time programmers, or any others who may be involved in heavy file management or spe-
cialized hardware peripheral considerations should consult the XDS PAL Manual, supplied to each installation, for
a description of the appropriate peripheral reference manuals. It should be noted that the PAL Manual also contains
descriptions of available software packages that were generated by other members of the User's Group.

vii

1. THE RBM OPERATING SYSTEM

Before discussing ways for your program to utilize basic RBM services it is necessary to come to a common understanding
of certain concepts, terms, and processes within the RBM context. The first of these is the operating system
itself.

An operating system consists of all the software used at a local facility to perform the services for which the instal-
lation was designed. The software includes the Real-Time Batch Monitor, language processors (assemblers and
compilers), service processors, and user programs, all closely integrated for a given number of applications.

No two operating systems are completely alike, because the user-created programs that form the user's extension of
the operating system and the processors chosen from the manufacturers list of software modules are selected to fit
unique requirements of the local facility. These requirements frequently change, and the system is correspondingly
enlarged or otherwise modified.

These factors are genercally found in all operating systems, but there are other characteristics that make RBM unique.
S M P g sy 9

REAL-TIME BATCH MONITOR SYSTEM

A real -time system such as RBM has event-driven scheduling for all real-time operations. That is, certain external
events occurring outside the immediate environment of the installation, such as various processes in an automated
factory or biomedical diagnostic lab, determine which real~time computer operation is taking place at any given
moment in time. The sequence of these real-time operations is not under the immediate control of a computer

operator or programmer.

Furthermore, although a number of outside events can be taking place simultaneously, each event has a priority of
importance in relation to all others, and this priority level determines which event gets service from the system first.
Each real-time event produces a signal that is connected to a hardware interrupt. The interrupt is the connecting
link between the external event and the real-time task that responds to it.

Under control of a real-time program, the computer can be set to respond to external events in many ways that
do not involve scanning or decision making by the CPU. For example, when one interrupt level becomes
ACTIVE, two or three higher, related levels might be DISABLED (postponed) long enough for the active level
to complete a portion of its work before the higher levels could become active. Yet any incoming signals
could be remembered. Further, a higher level that was ARMED and ENABLED could become ACTIVE immedi-
ately upon receiving an external signal.

This leads into one of the most important and distinguishing features of a true real-time operating system such
as RBM: unlike other forms of operating systems that may offer some real-time capability as a secondary fea-
ture, RBM guarantees that its ability to provide extremely fast responses to interrupts will not be degraded by
outside interference. That is, within the predictable limits of the hardware interrupt priority system and cer-
tain structural considerations of the real-time software (program segmentation), RBM absolutely protects a cur-
rently active real-time event from any slowing of response time (within 100 microseconds) by the actions of a
lower-priority real-time process, a background process, or even inadvertent human interference such as hitting
a Control Panel INTERRUPT switch. Further, the Monitor never interjects itself between real-time processes
and their interrupts, but remains passively ready to respond immediately to calls for service from real-time ex-
ternal events within the self-imposed time limit stated above.

Some body of user-designed code (called a task) is associated with each interrupt level, and the RBM system is
organized around the concept of tasks and programs. The most fundemental unit of software associated with an
interrupt is the real-time task.

The RBM Operating System

REAL-TIME TASK

A task is a body of code (and data) associated with one and only one hardware priority interrupt. This task is
executed only if its corresponding interrupt level becomes ACTIVE. The task executes at the priority of its level
and may be interrupted by a higher priority task. When completed, the higher level task will exit to the next lower
waiting task. It does this by restoring any registers that have been modified, by restoring system pointers and status
values to their previous conditions and by executing an instruction to exit from the current active level. These func-
tions are performed either by a Monitor Service Routine or by the task itself.

Tasks may be triggered by other tasks or by external events. For example, a very high priority task may be con-
nected (via an interrupt level) to an external signal. When the signal triggers the interrupt, the high priority task
may be used to collect real-time data. The task may then terminate itself, triggering (under program control) a
lower priority level task to process the data. The lower level task can continue processing at a less critical time
when all intermediate levels are inactive. This procedure prevents loss of valuable data due to conflicting demands
on computer time, yet enables the computer to be used as fully as possible for the most critical operations. It should
be noted that it is never necessary for a task to know specifically which task it is interrupting or which task inter-
rupted it. Note also that there is a distinction between real -time tasks and foreground programs.

FOREGROUND PROGRAMS

A real~time program is a collection of one or more related tasks and common data loaded and controlled as a unit.
This collection of tasks may have (but need not have) contiguous interrupt levels in hardware priority sequence.
Such a program is identifiable by name, so that it may be loaded into core memory or released from memory on re-
quest. A foreground program could consist of a single task, and the triggering of its interrupt would set off a series
of processes in serial sequence.

It is possible to have foreground programs that are not controlled by external events but which nevertheless execute
in foreground memory (and are connected to hardware interrupt levels) with all the protection privileges and use of
dedicated I/O devices that real -time tasks have. Such programs may be loaded and released by the computer oper-
ator by other foreground tasks, or may be loaded from the background job stack. They may be operated periodically
from a real -time clock, 1/O end-actions, etc.

A foreground program may be called in and initialized by any of the following:

Another foreground task
Computer operator (unsolicited key-in)

Background job stream

Execution of the tasks connected to interrupts may be caused by any of the following processes:
External interrupt
Real-time clock

Computer operator (unsolicited key-in)

There are three possible types of foreground programs in RBM and they are classified according to the manner and
location in which they are installed in foreground memory. Foreground memory is divided into two areas: resident
and nonresident.

1. A resident foreground program is automatically loaded into its fixed area (absolute location) in resident
foreground memory every time the system is booted in.

Real -Time Task/Foreground Programs

2. A semiresident foreground program is explicitly called from secondary storage (RAD or disk pack) into its
portion of resident foreground memory for execution. The explicit call is made either by a resident fore-
ground program or operator key-in. It is the responsibility of the caller to ensure that the required memory
space is really available and not already occupied, since the program is unconditionally loaded.

3. A nonresident foreground program is also explicitly called by another foreground program or operator key-
in from secondary memory but normally is loaded into the nonresident portion of foreground memory for
execution. The space thus occupied is considered “active" and the program is fully protected by the
Monitor from the background. If the nonresident space is already occupied when the call is made, the re-
quest is queved. !

Note that foreground programs, regardless of type or function, can only execute (e.g., perform read/write and
compute operations in the foreground area. Compilations or assemblies can never take place in the foreground mem-
ory area. Therefore, before any foreground programs and tasks can be executed, they must first have been created
by background jobs.

BACKGROUND JOBS

A job is the basic independent process performed in the background area of memory. Each job is independent of any
other job, and consists of one or more directly or indirectly related job steps. A job step is the execution ofa single
language processor program, service processor program, or user program within a job. The program for each step is
brought in for execution by a processor command that identifies the program. Jobs can call for Extended Symbol
assemblies or FORTRAN compilations; that is, they can translate your source (symbolic) deck into a binary format
called the relocatable object module, and then call in a service processor called the Overlay Loader to form the
executable version of your program termed the absolute load module or program file.

Background jobs are frequently referred to as batch jobs, which means that RBM permits you to load a series of jobs
for sequential processing (see "Job Stream Summary" below and Chapters 2 and 3 for definition)or build a job stack
of several unrelated jobs. Naturally, all inputs that follow a given processor command within a batch must be writ-
ten in the same language; that is, all must be written in FORTRAN or all in Extended Symbol, etc. Additionally,
the parameters specified on the processor command will apply to every input module that follows it within the job
step. The primary purpose in batching jobs is to reduce idle time between jobs and to increase throughput speed.

All background jobs, whether they are to become real-time programs or not, are loaded, assembled or compiled,
and checked ouf in the same way. The only difference is that jobs intended for the foreground must be given per-
mission to be loaded into protected foreground memory through operator FG key-ins and options on some control
commands before the executable versions are loaded in a protected foreground area.

As implied above, some background jobs never become foreground programs. Once they have been processed into
executable form, they are executed in the background memory area as background programs. Background programs
are identified by name, (filename), the same as foreground programs. Background programs must execute in user
mode and must perform all 1/O through Monitor service routines, as opposed to foreground programs that execute in
master mode and can either elect to use Monitor service routines or perform their own 1/0.

In this explanation of job processing, we have implied that various services are performed by the system to aid your
programming efforts, and we have alluded to "foreground" and "background" memory without defining them fully.
Further discussion of foreground/background programs requires that we now define these as well as other terms.

THE MONITOR

The Monitor is the supervisor or executive part of the system that controls, coordinates, and provides services for
both real-time and background programs, For background processing, the communications link between you
and the Monitor is through a subprocessor called the Job Control Processor (JCP). The JCP reads, interprets, and

In RBM, "queuing" refers fo a list of entries maintained by the Monitor that identifies items waiting for service or
attention. The following terms are sometimes interchangeably used with queuing: scheduling, sequencing, ordering,
or dispatching.

Background Jobs/The Monitor

6

RESPONSE TIME

Response time is the tofal time it takes for a task to begin executing meaningful instructions in response to some

external signal. If a program must be brought into core, response time is the total time required to access the RAD,
bring the root into core, initialize, and then respond to external interrupt(s). The amount of delay in response time

that can be tolerated must be determined for each individual real~time program (and sometimes each task) within the
system. However, many real-time applications at a given facility do not need response time as rapid as that avail -
able with resident programs, and of course, response time is not a factor in background programs.

The following section summarizes preceding material and presents additional information that is necessary before
going on to the examples in Chapter 2 or 3.

JOB STREAM SUMMARY

Sigma RBM provides two levels of services for computer users: real-time (foreground) services and batch (back-
ground) services. The sequence of foreground programs is controlled by external interrupts, interval timers, a call
by another foreground task, or the computer operator. Most operating system services are called in via system func-
tion calls within the program, with certain other services being implicitly provided.

Batch programs are processed serially in the order submitted. There are four primary subprocessors (often called
service processors) fo assist the Monitor in providing service to the background job stream:

Job Control Processor
Overlay Loader
RAD Editor

Utility Processor

To make use of these background service processors, each job submitted must conform to the general requirements of
the operating system and the specific requirements of the service processor being utilized.

The portion of the operating system that responds fo control commands preceded by an exclamation mark (!) and
performs and coordinates many other system functions in the background is the Job Control Processor. The terms
"JCP commands" and "Monitor commands" are frequently used interchangeably. The JCP accepts control command
input from a specific input device designated as the Control Command Device (referred to in this manual as the
"CC" device). This device is commonly a card reader, although other media may be used instead of cards (the use
of a RAD or magnetic tape as the "CC" device generally is not recommended because they are less flexible).

In a typical batch operation, several jobs are combined into a single "batch stream" although each job retains
its identify through its preceding !'JOB (or !JOBC) control command. The entire job stream is terminated when
the JCP interprets a IFIN control command that informs the Monitor that no more jobs are to be processed in
the current batch stream.

In addition to the !FIN control command terminating the batch stream and the 1JOB control command preceding each
job, other Monitor control commands may be used within a job to request various services. For example, a ILIMIT
control command may be used if the user wants to limit the processing time or other system resources expended.
Should the job exceed the time limits defined on the !LIMIT command, it would be aborted.

There are many control commands that can be used in a job, with one of the most generally useful being the
IASSIGN command. An IASSIGN command may be used to direct the flow of I/O to or from a specified
peripheral device or RAD file. !ASSIGN commands enable the user to write a program containing symbolic
reference to "logical" 1/O devices rather than to "physical" devices by assigning a device-file name to an
operational label (logical device name), RAD file, or physical device. This allows selection of a particular

Job Stream Summary

physical device to be deferred until the job deck is prepared, and also permits any logical device to be reassigned
at cerfain points within job processing.

In addition to controlling the assignment of a logical device, an TASSIGN command may be used to control a variety
of 1/O parameters for that device. For example, an TASSIGN command may specify that a particular logical device
is to read information from a specified RAD file. When the user's program is executed during a subsequent step
within the job, the Monitor searches its Master File Directory for the specified file, and makes that file available
whenever data is to be read via the assigned device. The !ASSIGN commands remain in effect until the next | JOB
or 1 JOBC command is encountered.

A background job is a collection of one or more job steps. A job step is all the control commands required for the
setup and execution of a single processor or user program within a job. These job steps can be one of the service
processors, a standard language processor such as Extended Symbol or ANS FORTRAN 1V, or a user-designed program.

Each processor, whether a service or language processor, is called for execution by means of a "processor” control
command. A processor control command begins with an exclamation mark followed by a name identifying the re-
quested processor; e.g., !FORTRAN or IXSYMBOL. Such commands may also contain parameters pertaining to the
execution of the program; the exact form depending on which processor is being called. Data decks usually follow a
processor command, although data may be input from a RAD file or other media.

Binary output from a language processor may be produced on punched cards, magnetic or paper tape, or a RADfile.
Such output is always in Sigma Standard Object Language format and must be translated (link edited) into execut-
able format by either the Absolute Loader or Overlay Loader before it can be executed by the computer. The Abso-
lute Loader is called via an !ABS command, and is principally used to place the Overlay Loader on the RAD at
System Load (SYSLOAD) time. While the Absolute Loader can also be used for placing user programs on the RAD,
this is generally not recommended, and there are a number of restrictions in using it for this purpose (the Absolute
Loader is described in the Sigma RBM Reference Manual under the 1ABS command).

The Overlay Loader is called via an lOLOAD control command, and is a much more powerful and versatile processor
for user program purposes. Throughout the rest of this manual, the term "Loader" always refers to the Overlay
Loader unless otherwise stated.

The 1OLOAD command may specify parameters related to the program elements to be loaded, the type of program,
(foreground or background) being constructed, and other optional parameters. If no special options are needed, the
command IOLOAD is sufficient. The name of the operational label used for the output generated by the Loader is
always "OV", which is assigned by default to a special file located in the System Data area of the RAD, and is
termed "RBMOV". The OV operational label is used to rewrite on this file. The output of the Loader is called a
program file (load module), which is a RAD file containing a core image of the executable program.

The program in RBMOV (sometimes referred to as the "OV file") file is called for execution via an IXEQ
command. Note that there is no protection for the program in the OV file. However, this file is not altered
by the Monitor, and unless changed by the background job stream, may remain intact between jobs.

Object modules may be linked by the Loader to form an "overlay" program structure. The logical structure of
an overlay program is defined for the Loader by means of I$ROOT and !$SEG Loader subcommands that must
follow the !OLOAD command. Segments are identified by segment numbers and are defined by I$SEG com-
mands for use by M:SEGLD service routine calls coded into the user's program. Segment O is always the root.

After a background program has been processed by the Loader, it may be brought into core for execution by
means of an IXEQ or !name command. Foreground programs can be loaded by an !XEQ command or by a
Monitor service routine call in another foreground task. Use of an !XEQ control command to load foreground
programs must be preceded by an operator FG key-in.

Job Stream Summary

8

File allocation, management, and manipulation is provided by calling in the RAD Editor service processor via a
IRADEDIT control command. The IRADEDIT command itself requires no parameters; after the RAD Editor is called
in, it reads subcommands that have a number sign () in column 2 and following an exclamation character in
column 1. These subcommands identify the functions to be performed, such as 1#COPY, #TRUNCATE, 1#DELETE,
etc., and each contains user-defined parameters that specify the RAD areas and files to be processed.

Further file manipulation, such as file and record editing functions, copying files from one non-RAD device to an-
other non-RAD device, etc., is provided by calling the Utility processor through a IUTILITY control command that
also defines the type of Utility function to be used. Each Utility function has its own set of unique control sub-
commands that further define a given operation to be performed.

The operating system is capable of handling foreground tasks and background batch jobs concurrently because of the
allocation of core into distinct foreground and background areas. All programs eventually infended for real-time
applications are first assembled or compiled, processed by the Loader, and checked out through the background job
stream. The programs are then loaded into their assigned files in the Foreground Programs area of the RAD, There-
after, all new or modified foreground programs are first assembled or compiled in the background job stream in ex-
actly the same fashion as any other batch job, and memory is allocated as required.

Now that basic orientation for the RBM system has been provided, some job examples for compiling or assembling
and loading through the background can be considered. If you plan to write most of your program in FORTRAN you
should go on to the next chapter. If you plan to write programs in assembly language, you should skip to Chapter 3.

Job Stream Summary

2. HOW TO COMPILE AND LOAD FORTRAN JOBS

Xerox Basic FORTRAN, Xerox Basic FORTRAN IV, and Xerox ANS FORTRAN 1V are the standard FORTRAN
compilers currently available to Sigma 2/3 RBM users. In a typical foreground/background environment, FORTRAN
users may range from engineers or other technical personnel who only occasionally write programs and have little in-
terest in the internal functions of the RBM system, to real-time programmers whose knowledge of the software and
hardware must be extensive. The discussion and examples that follow in this and other chapters are in increasing
order of complexity that reflects this user range.

The examples in this chapter use the ANS FORTRAN IV specification options on the IFORTRAN processor card.
Except for this major difference, all examples are equally valid for users of the other two compilers unless otherwise
noted. ANS FORTRAN IV will process programs written for Basic FORTRAN and Basic FORTRAN 1V.

COMPILATION WITH SOURCE LISTING

Figure 1 shows a FORTRAN job deck with the minimum control commands required to obtain a compilation of a

source program and a source listing output to the line printer. The !JOB command informs the Monitor that a new
job is being input. Optionally, the 1JOB command could also contain an account number and user-defined name;
e.g., !JOB 12345, FORTSAMP if job account was being used at the local facility.

Since binary output is not usually desired for an initial compilation and you will want to "desk check" the source
listing before producing an object deck, the two IASSIGN cards are used to suppress binary output to the BO
(usually a card punch) and GO devices. If BO and GO were not assigned to 0, a request for binary output would
be assumed by default.

The 'FORTRAN card specifies a source listing (always defaulted) and the SQ option specifies that the compiler is to
perform a sequence check of the source deck. Use of the SQ option is recommended for all initial compilations.

The 1EOD card indicates that no further FORTRAN source statements are to be compiled and allows the compiler to
exit to the Job Control Processor (JCP).

[1FIN \

IEOD

Source deck
| 1FORTRAN 5Q AN
IASSIGN GO =0 \

[1AssiGN BO=0 AN
1JOB AN

Figure 1. Compile with Source Listing and Suppressed Binary Output

How to Compile and Load FORTRAN Jobs

9

10

The IFIN card informs the system that the job is completed and no other jobs are forthcoming. Should the job be
one of a series in a "batch", the source decks would be followed by an IEOD card for each deck instead of !FIN
until the final deck was input. This example is the simplest case of an ANS FORTRAN compilation under RBM.

COMPILE MAIN PROGRAM WITH SUBPROGRAMS

Compilation of a FORTRAN program with included subprograms poses no problems in terms of RBM interface. The
single IASSIGN card shown in Figure 2 suppresses binary output to the GO device but binary output to the BO de-
vide will be produced in this case. The compiler will produce a source listing on the line printer. The system does
not require any control commands between the subprogram modules.

Y AN

FORTRAN Sub,

FORTRAN Subprogram

FORTRAN Subprogram

Main FORTRAN program

| IFORTRAN 5Q AN
— [1assioN Go=0 N\

1JOB \

Figure 2. FORTRAN Compilation with Subprograms, Binary Qutput to BO Device, and Source and Object
Listing to LO Device

EXECUTE OBJECT MODULE FROM CARD INPUT

After a source program has been successfully compiled into a binary object version that is free of obvious logical or
coding errors, it is ready to be reloaded into the computer for execution. The example in Figure 3 shows the deck
structure for loading @ FORTRAN - produced binary object deck. Note that in this example we are assuming that
the BI operational label is assigned to the card reader device at the local installation; if this was not the case, BI
would have to be temporarily reassigned to this device via an TASSIGN command.

Compile Main Program with Subprograms/Execute Object Module from Card Input

[RN AN

Optional

[Data deck

[1xeq

Object Module

| 15ROOT ,,BI,]
[roLoap

1JOB

Figure 3. Object Program Input from Card Reader for Execution

The !OLOAD card calls in the Overlay Loader, and the Bl and 1 parameters on the Loader !$SROOT card informs the
Loader that it is to read one object module (binary deck) from the card reader, translate this into the load module
(executable program or program file) and write this executable program into the RBMOV file. The RBMOV file is

the default output file for the Loader and is located on the RAD. The default OV file will be reused the next time

a program is loaded. The use of the lOLOAD card without parameters implies default of all options. Therefore, this
will be a root only, background program with COMMON size taken from the object module (see the Overlay Loader
chapter of the RBM Reference Manual for discussion of other options). The double comma on the ISROOT card tells
the Loader that the default cases are to be used for the "temp" and "exloc™ options.

The IXEQ card causes the core image copy of the executable program to be loaded into core from RBMOV to
process the data.

COMPILE AND EXECUTE FORTRAN PROGRAM

When your source program has been checked out to the point where any remaining coding errors are likely to be
minor or the program is very simple, it is often useful to compile, load, and execute the program as one job. This
procedure is commonly known as a "load-and-go" operation, and saves both computer time and unnecessary hand-
fing of the job.

In the load-and-go example illustrated in Figure 4, the 'ATTEND card immediately following the !JOB card
inhibits the Monitor Abort routine so that the system will go into a wait state instead of aborting the program
in case any remaining program error is encountered. This will enable you to attempt corrective action at con-
sole while the program is still in memory, and is generally recommended for personally attended load-and-go
jobs.

Since there are no commands preceding the IFORTRAN processor card, binary output will be written to both
the BO and GO devices. The GO "device" is the RBMGO file on the RAD, and is the file from which
the Overlay Loader will read its input. A source listing will be printed. The IOLOAD card calls the Over-
lay Loader, and the GO option on the !$ROOT card informs the Loader that it is to read one object module

Compile and Execute FORTRAN Program

11

12

o ~)

Data deck

| ixeQ

IPMD ,ALL

| 1EOD AN
[1sroOT ,,GO1 AN
[IsML \
[toLoAD N\

TEOD

Source deck
| IFORTRAN SQ,LO \
——| IATTEND AN

1JOB \

Figure 4. FORTRAN Load and Go Job

from the GO file, form the load module, and write it into the RBMOYV file for subsequent loading into core for
execution. The I$ROOT card also specifies that the "temp" and "exloc" default cases (double comma) are to
be used.

The !$ML card informs the Loader that a Long map is to be output (an example and explanation of a load map is
given in Chapter 6, "How to Build An Overlay Program").

The !PMD card provides for a core dump for further diagnosis if corrective action at the console is unsuccessful. As-
suming !ATTEND was present, the IPMD card will cause a post-mortem dump to be output if you terminate a
console recovery attempt with an X key-in (operator abort). Since ALL is specified, all of background mem-
ory and the CPU registers will be dumped in case of an abort for any reason. Generally, use of a IPMD com-
mand is advisable for load-and-go jobs regardless of the presence or absence of an !ATTEND card. The !PMD
command is effective only for the job step following its appearance.

The !XEQ card calls the load module into core and gives control to the program for execution.

Figure 5 illustrates the job flow of a typical load-and-go job.

Compile and Execute FORTRAN Program

BEEREIOROS

FORTRAN Load
and Go Job.

CPU

Compiler

GO File (default)

CPU]

Overlay Loader

OV File (default)

CPU Y

User Program

Figure 5. Load and Go Sequence

Compile and Execute FORTRAN Program 13

14

COMPILE, LOAD, AND GO FROM PERMANENT GO FILE

In the last example, we made the statement that the contents of the RBMGO file (the default GO file) is temporary
and will be destroyed the next time a program is assembled or compiled. In some cases, it may be desirable to save
the compiler output. In cases where you may be modifying or patching a program and do not wish to recompile every
time, the compiler output file can be saved by defining your own GO file on the RAD (i.e., in the UD area).

Creating a user-defined file involves two control commands: the RAD Editor !#ADD card and the 1ASSIGN card.
The Editor 1#ADD card is covered in more detail in the chapter "How To Create and Manipulate Files".

In the example in Figure 6, the !PAUSE KEYIN SY, S card is used to remove Monitor protection of previously defined
RAD areas, and it functions in a similar manner to the FG key-in except that it permits access to protected RADareas
instead of foreground core memory.

| 'FIN \\

Data deck
[1xea \

0 [!EOI!)PMD LALL \\

——| 1sro0T ,,G0,1
|OLOAD

Source deck

— IFORTRAN \

——| 1ASSIGN GO=FORGO,UD

[1eop AN

—— 1#ADD UD,FORGO,4,120,B \
| 'RADEDIT \\
———=| IPAUSE KEYIN SY,S \

| 1aTTEND AN
1J0B N\ —

Figure 6. Compile, Load, and Go from User-Defined GO File

Compile, Load, and Go from Permanent GO File

The !*ADD card following the RADEDIT card informs the Editor that a new entry is to be added to the UD area,
the name of the user-defined file is FORGO, and the file size is four records. The record must be 120 bytes to
accommodate the Standard Object Language, and the file format should be blocked sequential access (B) for
space economy.

The 1ASSIGN command temporarily assigns the GO operational label to file FORGO (for this one job only) in the
UD area of the RAD.

The !FORTRAN card specifies that a source listing is requested, a binary object deck is to be produced, and the Re-
locatable Object Module (ROM) is to be written to the GO operational label (which is reassigned to file FORGO).
Identical ROMS are output on both BO and GO.

The Overlay Loader is called in (IOLOAD) and translates the ROM defined by the 1$ROOT and (GO) into a load
module and writes it in the RBMOV file (by default) for subsequent loading and execution. The double comma on
the !$ROOT card specifies the default case for the "temp" and "exloc " parameters. Note that although the number
of modules is specified (1), the "1" does not actually have to be specified in this case, since the IEOD on the GO
file would terminate reading of the module.

BO instead of GO could have been assigned to file FORGO if a copy of the ROM was not desired from some selected
device media. The choice is up to you, but there is a rule about assigning BO to a user file that should be
remembered:

e The record size specified on the 1¥ADD command must be 120 bytes (60 words per record) and an EOF
should be written by the user (WEOF BO) to properly indicate end of data in the file. The compiler
does not write an EOF to the BO operational label.

The Overlay Loader requires that all of its input object modules have 120-byte records and will abort the job if this
is not so. Since the compiler does write an EOF to the GO operational label, no !WEOF command s necessary in
the example; a file mark is written automatically at the end of the object module.

COMPILE, LOAD, AND GO FROM PERMANENT OV FILE

In the previous example, a program was compiled and the object module was written into a user-defined permanent
GO file, but the Loader wrote the load module (executable program or program file) onto the RBMOV file for exe-
cution. Like RBMGO, the RBMOV file contents are considered temporary and may be altered from one job to an-
other. Using the OV file is a useful procedure for programs not completely checked out or subject to frequent
updating. However, once a program is completely debugged, you can define your own permanent OV file. The
program can then be loaded into core for execution repeatedly, without the necessity of recompiling or recreation of
the load module by the Overlay Loader.

The method for creating your own permanent OV file is quite similar to creating a permanent GO file, and again
involves use of the !ASSIGN command and the RAD Editor !#ADD command.

In the example in Figure 7, the IRADEDIT card calls in the RAD Editor and the !#ADD card informs the Editor that
a new entry is to be added to UP area. The name of the file is to be USEROV and there are four records within the
file (filesize}). The double comma specifies that the default record size is to be used and the format is to be random
access (R). The file has write protection from everything except background programs (B).

The |FORTRAN card specifies a source and object listing, sequence check, a binary object deck, and a copy of
the object module to be written into the RBMGO file.

The !ASSIGN command assigns the OV operational label to file USEROV (for this one job only) in the UP area
of the RAD.

Compile, Load, and Go from Permanent OV File 15

16

[1rN \\

Data Deck

[1xEQ N\

| !'PMD ,ALL \

| 'EOD \
| !$rROOT ,,GO \

| 1oLoaD
——=| 1ASSIGN OV=USEROV,UP

J Source Deck

— | IFORTRAN 5Q,LO \\
1 JOB
| teop \
——| 1#ADD UP,USEROV,4, ,R,B \
| 1RADEDIT AN
| 1PAUSE KEYIN SY,S AN

| 1ATTEND AN
1JOB N\ B

Figure 7. Compile, Load, and Go from Permanent OV File

The Overlay Loader translates the object module defined by the !$ROOT command into a load module and
writes it in the USEROV file for subsequent execution. Future execution may be either by use of IASSIGN
OV =USEROV, UP and IXEQ cards, or the processor call IUSEROV. You have created a permanent user program
named USEROV.

Of course, there is nothing to prevent you from combining the creation of permanent GO and OV files into
one job. This would merely involve adding the IASSIGN and Editor 1#ADD cards from the previous perma-

nent GO file examples.

Compile, Load, and Go from Permanent OV File

COMPILE AND EXECUTE IN FOREGROUND AREA

An example of loading a FORTRAN job from the background job stream that is to be executed in the nonresident

foreground area of memory is illustrated in Figure 8. The deck structure for such jobs is identical to other load-

and-go jobs except that the operator must key-in FG,S to access foreground memory, and the foreground option (F)
must be specified on the 1OLOAD card (the default option is B for background).

Data deck

[1xeq L

r IPMD ,ALL \

| !PAUSE KEYIN FG,S

[teop r

—] I$ML

[isro0T GO \
[1oL0AD F,, X \
IEOD \

Source deck

| !FORTRAN SQ,DB
| !'ATTEND \\
1JOB \

Figure 8. Compile, Load, and Execute in Foreground Area

All access to protected memory from the background job stream must be preceded by an FG key-in. Failure to do
so is a foreground write protection violation and aborts the job unless an IATTEND card is present. If TATTEND
is present and the IPAUSE KEY-IN FG,S card is accidently excluded, the Monitor will go into a wait state. The
FG key-in must then be input and the command that caused the protection violation must be repeated.

The first comma (preceding "F") on the !OLOAD card informs the Loader by default that only a root segment is
to be loaded; the "F" identifies the load module as a foreground task; the triple comma specifies that the step

mode and Debug options are not being used. The X parameter requests the Loader to abort the job if a severity
level greater than zero is encountered during the load process.

Compile and Execute in Foreground Area

17

18

The double comma on the 1$ROOT card informs the Loader that the default temp stack size (80 cells) is to be
used and that the default beginning location for the load module is to be K:NFFWA (nonresident foreground first

word address) in the nonresident area of foreground memory. The GO option specifies that the Loader is to read
the single ROM (1) from the RBMGO file and write the load module into the RBMOYV file by default.

The ISML card causes the Loader to output a Long map when the load module is written into RBMOV.

The !PAUSE KEYIN FG,S card causes the system to go into a wait state so that the operator can perform the
necessary FG,S combined key-in. This directs the Monitor to permit access to protected memory and continue
processing.

The !XEQ command causes the load module on OV to be loaded into nonresident foreground memory for exe-
cution, beginning at location K:NFFWA.

HOW TO USE 026 SOURCE AND DATA DECKS

The RBM system expects all card images for source and data to be in the 029 character set. However, it is
sometimes necessary or desirable to run FORTRAN jobs that were originally punched in the 026 character set
format.

RBM has SYSGEN input parameter options called BR4 (026 card input), BP3 (026 card punch output), and B7

(7-track BCD magnetic tape) that will process I/O in BCD format instead of EBCDIC. If any or all of these

required options are not already assigned to user-selected device file numbers at your local installation, it will
be necessary to re-SYSGEN or perform a SYSGEN update before they can be used. See the subheading "In-
put Parameters" in the System Generation chapter of the RBM Reference Manual.

Figure 9 shows a complete FORTRAN job example with all input in 026 format, including main source program
and subprograms on cards and the input data (fo be read on FORTRAN device unit number F:112) on 7-track
magnetic tape. The example assumes that a prior SYSGEN has assigned BR4 to device file number (DFN) 11
and that B7 has been assigned to DFN 12.

The presence of the !ATTEND and !PMD cards are suggested for diagnostic and corrective action when sub-
mitting a job that may be unfamiliar to the programmer submitting the job.

The first 'ASSIGN card assigns the SI (source input) device to DFN 11 to read the source program and
subprograms.

The IPAUSE command outputs the message on the card and then causes the Monitor to go into a wait state so
that the operator can mount the 7-track tape containing the 026 input data to be processed.

The next !ASSIGN card assigns the FORTRAN device unit number (F:112) to DFN 12 to read in the data af
execution time.

How to Use 026 Source and Data Decks

[IFIN

[IXEQ

EBCDIC (029)

[IPMD ,ALL

card codes

| 1ASSIGN F:11

2=12 (87 DFN)

[1PAUSE MOUNT BCD DATA TAPE

| 1eop
I$ROOT ,,GO i
_—
029 | 10L0AD \
| 10D \
BCD (026)
card t(:odes User Subprogram (026 Code)

[User

Subprogram (026 Code)

I Main Source Program (026 Code)

|
EBCDIC (029) [iFoRTRAN SQ
card codes "“"l TASSIGN SI=11 (BR4 DFN)
[1atTEND \
1JOB N

Figure 9.

Job Setup with 026 Source and Data

How to Use 026 Source and Data Decks

19

20

3. HOW TO ASSEMBLE AND LOAD EXTENDED SYMBOL JOBS

Xerox Extended Symbol is the standard assembler available to RBM users. The information and examples in this
chapter deal with the basic interface between RBM and your symbolic programs or updates; other and more com-
plex material is given in the chapters concerning the Standard Procedure (52) File, assembly language and FORTRAN
routine interface, and real -time procedures.

EXTENDED SYMBOL ASSEMBLIES

Figure 10 shows an Extended Symbol job deck with the minimum control commands required to obtain an assembly
listing output to the line printer. The !'JOB command informs the system that a new job is being input. Optionally,
the ! JOB command may also contain a name and account number (e.g., 'JOB SAMP1,12345).

EO!DF - \\

Symbolic deck

[ixsymsoL LO \
1JOB AN

Figure 10. Assemble Single Program with Listed Output to LO Device

The !XSYMBOL card following the !JOB card informs the JCP that control is to be transferred to the assembler
and LO specifies that an assembly listing is to be output (normally to line printer). The BO parameter is not speci-
fied because you will usually wish to "desk check" an initial assembly before producing an object deck.

Since in this program example we do not wish to use all the default options available (BO,GO,and LO), the desired
option (LO) is specified. The only output will be the assembly listing.

The !EOD card must be present, to terminate execution of the assembler, before the IFIN card is encountered
or the job will be aborted. The !FIN card informs the system that the job is completed and no other jobs are
forthcoming.

ASSEMBLE, LOAD AND GO

When your source (symbolic) program has been "desk checked" to the point where any remaining errors are likely to
be minor or nonexistent, it is often useful to assemble, load, and execute the resulting program file (load module)as
one job. Such a job is commonly known as a "load-and-go" operation and saves both computer time and unneces-
sary handling of the job.

How to Assemble and Load Extended Symbol Jobs

In the load-and-go example illustrated in Figure 11, the IXSYMBOL card specified by default that listing output
is to be transmitted to the LO device, that binary output is fo be produced (BO), and that the object program produced
from the assembly is to be written on the RBMGO file, from which it is later read by the Overlay Loader as input.

[1FIN AN
| IXEQ AN

| 1pmMD \
| 1eoD AN
I$ROOT _,,GO, 1

[1oL0AD \\
\

1EOD

Source deck
—| ixsymsoL \

| 1ATTEND \
1JOB N\

Figure 11. Assemble, Load, and GO

The IOLOAD card calls in the Overlay Loader, and GO option on the 1$ROOT card directs the Loader to read the
object module from the GO file, translate this into the load module (executable program or program file) and load it
onto the RBMOV file. The OV file contents are also temporary and may be destroyed if another load module is
loaded into the file.

The double comma on the I$SROOT card tells the Loader that the default cases are to be used for the "temp"
and "exloc" options and the program will be executed in the background. The "1" following the GO parameter
informs the Loader that only one object module is to be loaded.

The IPMD card applies only to the job step following it, and provides added information for future diagnosis
if corrective action at the console proves unsuccessful. Assuming 'ATTEND was present, the IPMD card will
cause a post-mortem dump to be output if you terminate the console recovery attempt with an "X" key-in (op-
erator abort). If the "U" option is specified, an unconditional dump will be output regardless of whether or not
the program is aborted; if "U" is absent the dump will only be output if an abort (for any reason) takes place.
If "ALL" is present, all background plus the CPU registers are dumped. Up to six pairs of "to" and "from"
locations can be specified for selective dumping. If no options are specified on the !PMD card, only the CPU
registers will be dumped (these registers are always dumped regardless of any specified limits). Generally, use
of the IPMD command is advisable for load-and-go jobs regardiess of the presence or absence of an IATTEND
card. The !ATTEND card inhibits the Monitor abort routine and will cause the Monitor to go into a wait
state instead of aborting a job so that corrective action can be attempted at the console.

Since the 1PMD card in the example does not contain any optional parameters, it will cause dumping of the CPU
registers (only) if the program is aborted for any reason.

Extended Symbol Assemblies

21

22

The IXEQ card causes the core image copy of the executable program located on OV to be loaded into
background core and executed.

LOAD AND GO FROM PERMANENT GO FILE

It is sometimes desirable to save the assembler output. In cases where you may be modifying or patching a program
every time it is loaded, the assembler output can be saved by defining your own file in the UD area (for instance).

Creating a user-defined GO file involves use of two control commands not previously discussed: the RAD Editor
1#ADD command and the !ASSIGN command. The Editor |#ADD command is covered in the chapter "How To Cre-
ate and Manipulate Files".

In the example in Figure 12 the PAUSE KEYIN SY,S card is used as a check to remove Monitor protection of pre-
viously defined RAD areas. SY is the RAD file analog of the FG key=-in used for accessing foreground core memory.

The !*ADD card following the 'RADEDIT card informs the Editor that a new entry is to be added to the UD area, the
name of the user-defined file is fo be GOUSER, and the filesize is four records. The record size must be 120 bytes
to accommodate the Standard Object Language, and the file format should be blocked sequential access (B) for
space economy.

TG
| !'EOD
[1srooT ,,G0,1
[
IEOD
Source deck
| 1XSYMBOL
| 1ASSIGN GO=GOUSER,UD
IEOD
——[1#ADD UD,GOUSER,4,120,8
| !RADEDIT
| IPAUSE KEYIN SY,S
| 1ATTEND
1JOB

Figure 12. Load and Go from User-Defined GO File

Extended Symbol Assemblies

The 1ASSIGN command temporarily assigns the GO operational label to file GOUSER (for this one job only) in
the UD area of the RAD.

The IXSYMBOL card specifies by default that a listing is desired (LO), binary output is to be produced on some
peripheral device (normally a card punch), and the Relocatable Object Module (ROM) is to be written to the GO
operational label which is reassigned to file GOUSER for this job. Identical ROMs will be written on both BO
and GO.

The Overlay Loader is called in (lOLOAD) and translates the ROM defined by the !$ROOT card (GO) into a load
module and writes it in the RBMOV file by default for subsequent loading and execution. The double comma on the
ISROOT command specifies the default case for the "temp" and “exloc" parameters. Note that although the num-
ber of modules is specified (1}, the "1" does not actually have to be specified in this case, since the IEOD on the
GO file would terminate reading of the module.

BO instead of GO could have been assigned to file GOUSER if a copy of the ROM was not desired from some sel -
ected device media. The choice is up to you, but there is a rule about assigning BO to a user file that should be
remembered:

e The record size specified on the |*ADD command must be 120 bytes (60 words per record)and an EOF should
be written by the user (\WEOF BO) to properly indicate end of data in the file. The assembler does not
write EOF to the BO operational label.

The Overlay Loader requires that all input object modules have 120-byte records and will abort the job if this is
not so. Since the assembler does write an EOF to the GO operational label, no !WEOF command is necessary; a
file mark is written automatically at the end of the object module.

MODIFY AN ASSEMBLY IN A PERMANENT GO FILE

Now that you have an assembled program located in a permanent file, it can be updated or modified without going
through a reassembly. Using the GOUSER file from the previous example, the deck structure in Figure 13 wouldadd
the patches and cause execution of the modified program.

| ixeq x
IEOD

Patch cards (I1$MD

| 1srR00T ,,G0,1 \
| 'oLoAD AN

[1ASSIGN GO=GOUSER,UD \
1JOB \

Figure 13. Assembly Update from Permanent GO File

Extended Symbol Assemblies

23

24

ASSEMBLE, LOAD, AND GO FROM PERMANENT OV FILE

In the two previous examples a program was assembled and the object module was written into a user-defined

permanent file, but the Loader wrote the load module (executable program or program file) onto the RBMOV file for
execution. Like RBMGO, the RBMOV file's contents are frequently altered from one job to another. Using the
RBMOV file is a useful procedure for programs not completely checked out or subject to frequent updating. How-
ever, once a program is completely debugged, you can define your own permanent file. The program can then be
loaded into core for execution repeatedly, without the necessity of reassembly or recreation of the load module by
the Overlay Loader.

The method for creating your own permanent file is quite similar to creating a permanent GO file, and again in-
volves use of the RAD Editor | *ADD command and the IASSIGN command.

In the example in Figure 14, the IRADEDIT card calls in the RAD Editor and the 1#ADD card informs the Editor
that a new entry is to be added to the UP area; the name of the file is to be USEROV, and there are four records
within the file (filesize). The double comma specifies that the default record size is to be used and the format is to
be random access (R). The file has write protection from everything except background programs (B).

| 1xEQ
| 1EOD
| tsroOT ,,GO,1
| roLoab
———| IASSIGN OV=USEROV,UP
IEOD

Source deck

| 1XsYMBOL LO,GO
| o8
| 10D
——| 1#ADD UP,USEROV 4, R,B

| 1RADEDIT
—] IPAUSE KEYIN SY,$
[!ATTEND

1JOB

Figure 14. Assemble, Load, and Go from Permanent OV File

Extended Symbol Assemblies

The IXSYMBOL card specifies that listed output is to be produced (LO) and the object program is to be written on
the RBMGO file (GO).

The IASSIGN command assigns the OV operational label to file USEROV (for this one job only) in the UP
area of the RAD.

The Overlay Loader translates the object module, defined by the I$ROOT command, into a load module and writes
it in the USEROV file for subsequent execution. Future execution may be either by use of 1ASSIGN OV=USEROV,
UP and IXEQ commands, or the processor !name call IUSEROV. You have created a permanent user program named

USEROV.

Of course, there is nothing to prevent you from combining the creation of permanent GO and OV files into one job.
This would merely involve adding the IASSIGN and Editor !#ADD cards from the previous permanent GO file
examples.

ASSEMBLE IN BATCH MODE

A "batch" assembly is a series of successive assemblies performed with a single !XSYMBOL command. Batching of-
fers processing and easier loading for the operator. There are three rules about batch assemblies that should be
remembered:

o The assignments and options on the single IXSYMBOL card apply to all assemblies within the batch
stream.

e Batch mode must be specified on the IXSYMBOL command via the BA option only if |EOD cards are used
to separate the decks; otherwise, BA need not be specified.

e The last job in a batch must be terminated by double 'EOD cards if the BA option is specified.
The example illustrated in Figure 15 shows three assemblies in a batch, Since !EOD cards are used as separators,

BA must be specified on the !XSYMBOL card so that the assembler will reinitialize itself when it encounters the
next source deck within the batch stream. Note that the parameters on IXSYMBOL could be in any order.

1EOD (optional)

Source deck
IEOD (optional)

Source deck

IXSYMBOL LO,BO,BA \

1JOB AN

—

Figure 15. Assemble in Batch Mode

Extended Symbol Assemblies

25

26

Source deck

Figure 15. Assemble in Batch Mode (cont.)

ASSEMBLE AND EXECUTE IN FOREGROUND AREA

An example of loading an assembly from the background job stream that is to be executed in the nonresident fore-
ground area of memory is illustrated in Figure 16. The deck structure for such jobs is identical to batch jobs
except that the operator must key-in FG,S to access foreground memory and the foreground option (F) must be
specified on the IOLOAD card (the default option is B for background).

All access to protected memory from the background job stream must be preceded by an FG key-in. Failure
to do so is a foreground write protection violation and aborts the job unless an ITATTEND card is present. If
an JATTEND card is present and the !PAUSE KEY-IN FG,S card is accidently excluded, the Monitor will go
into a wait state. The FG key-in must then be input and the command that caused the protection violation
must be repeated.

The first comma (preceding "F"), on the 1OLOAD card informs the Loader by default that only a root segment is to
be loaded; the "F" identifies the load module as a foreground task; and the triple comma specifies that the step
mode and Debug options are not being used. The X parameter requests the Loader to abort the job if a sever-
ity level greater than zero is encountered during the load process.

The double comma on the '$ROOT card informs the Loader that the default temp stack size (80 cells) is to be
used and that the default beginning execution location for the load module is to be K:NFFWA (nonresident
foreground first word address) in the nonresident area of foreground memory. The GO option specifies that the
Loader is to read the single ROM (1) from the RBMGO file and write the load module into the RBMOV file
by default.

The 1$ML card causes the Loader to output a Long map when the load module is written into RBMOV.

The !PAUSE KEYIN FG,S card causes the system to go into a wait state and outputs the message on the card to the
operator's console so that the operator can perform the necessary FG,S combined key-in. This directs the Monitor to
permit access to protected memory and continue processing.

The !XEQ command causes the load module on OV to be loaded into nonresident foreground memory for exe-
cution, beginning at location K:NFFWA,

Extended Symbol Assemblies

[RN

| 1xeQ

IPAUSE KEYIN FG,S

'EOD

[1smL

ISROOT ,,GO,1

| 10L0AD F,, X

[1e0OD

Source deck

[

IXSYMBOL LO,GO \

1JOB

[1atTEND AN

Figure 16. Load and Execute in Foreground Area

Extended Symbol Assemblies

27

28

4. HOW TO CREATE AND MANIPULATE FILES

Whenever you want to allocate space or create or maintain permanent files on a RAD or disk pack, you must first
call in the RAD Editor. The RAD Editor interprets and executes Editor control commands that define the operation,
area mnemonic, and file name to be used.

Files to be saved achieve their permanent status by being created in the designated permanent area. Permanent
areas are large blocks of RAD or disk pack space, each of which represents a grouping of files in terms of function.
These permanent areas are initially set up at System Generation time and RBM will define the following areas by
default if not defined by the user:

System Processor area (SP) Contains language processors, nonresident portions of the Monitor, etc.

System Library area (SL) Contains FORTRAN Library, etc.

System Data area (SD) Generally contains the RBMGO and RBMOYV files among other items.

Checkpoint area (CP) Used for storing the background context when checkpointed by the
foreground.

Background Temp area (BT) Used as temporary scratch storage by background programs or processors.

During SYSGEN, the default cases for any of these areas may be overridden. The following areas are of direct
concern to the RAD Editor:

System Processor area (SP)

System Data area (SD)

System Library area (SL)

Background Processor area (BP)

Foreground Processor area (FP)

User Processor area (UP)

User Data area (UD)

User Library area (UL)

Data area (Xn, where n is a hexadecimal digit)

aa (where aa represents a two-character mnemonic on the Dictionary)

You can put any type of file into any area desired. The area names are simply a convenience to expedite file
housekeeping and management. The area names are formalized at SYSGEN and certain protection privileges
are accorded to the areas, but what is put into these areas is up to you. Program files could be put into Data
areas or vice versa.

The very permanence of Editor-created files suggests that you exercise economy by not using up any more per-
manent RAD or disk pack space than is strictly necessary, and instead, use temporary space in the BT area
whenever possible.

How to Create and Manipulate Files

The Background Temp area (BT) does not contain any permanent files and therefore is not the concern of the Editor
since it cannot create files in this area. The Background Temp area contains the temporary scratch file (X1
through Xn) that are used by processors and the users.

® Management of permanent RAD areas and their files is handled by the RAD Editor via Editor control
commands.

e Management of the Background Temp area (BT) scratch files is controlled through IDEFINE and !TEMP com-
mands, or M:DEFINE Monitor service routine.

Since the Editor is itself a background processor, use of RAD Editor services is performed through the background job
stream. This means that a foreground program never calls the RAD Editor to perform services. The allocation and
subsequent manipulation of both foreground and background files are performed as background job steps.

Before discussing the use of the Editor and some of the control commands used to communicate with it, two terms must
be clearly understood in the RBM context:

o A record is the amount of information processed by a single Write or Read instruction, and contains a user=
specified decimal number of bytes. This number of bytes constitutes the RECORD parameter (record size).

e Afile is an arbitrary, predetermined number of records that define the file's FILE parameter ffile size). A
file on the RADmust always have a name of three to eight EBCDIC characters by which it will be cataloged
by the Editor in the proper permanent RAD area directory for all later calls to it. The file name is created
by the user. Types of files include: program files that are interchangeably called executable programs or
load modules; System and User Library files used by the Overlay Loader to satisfy external references in
user's programs; and data files. Files are further categorized by FORMAT type: sequential, which may be
U (unblocked), B (blocked), C (compressed); or random, which may be unblocked random (R} or (packed)
random (P).

HOW TO CREATE A FILE

To create a file on the RAD for subsequent loading of either data or a background or foreground program, the Editor
command

1#ADD areaname, filename

is used. Since the Editor needs to know whether it has RAD space available whenever it encounters an I#ADD
command defining an area and a file name, it also expects you to specify

file (File size)
record (record size)
format (blocked, unblocked, compressed, random, blocked random)

on the same card, where as discussed previously, a file is a logically ordered group of records, and a record
is the amount of information generally processed by one Read or Write request. FILE tells the Editor how many

How to Create a File 29

30

records to allocate a file. RECORD tells the Editor the maximum number of bytes per record. FORMAT tells the
Editor the structure of the file. However, RECORD and FORMAT do not necessarily have to be specified if you are
willing to let the Editor give you default options. For descriptions on default options, see RAD Editor chapter in
the RBM Reference Manual. To create a data file, the sample command

1#ADD D1,SAMP,20, ,U

would define a file named SAMP to be allocated in the D1 area of the RAD. This file can contain up to 20 records.
Since the "RECORD" was not specified, SAMP would have a default size of 360 bytes or 1024 bytes, depending on
the RAD sector size where D1 is located.

Assume the default size is 360 bytes; therefore, the above |*ADD command would cause the Editor toreserve 7200 bytes
of space in D1 under file name SAMP. So, the example has exactly the same effect as writing the command

1#ADD D1,5AMP,20,360,U

Using unblocked "FILE" format can sometimes waste space. For instance, if the purpose of the file SAMP is to hold
the contents of 20 data cards (one EBCDIC card =80 bytes of information), then 280 bytes in each one of the
20 records is wasted RAD space, and better efficiency is needed. Change the format of the example to blocked
and the record size to 80 bytes:

1#ADD D1,SAMP,20,80,B

For any blocked file, a 180-or 512-word blocking buffer is used to group as many records as will fit. If the blocking
buffer is 180 words, in our new definition of SAMP above, four and one-half 80-byte records will fit in one block.
Since it would take five blocks to contain 20 records, the amount of RAD space used would be five sectors.

This is very efficient use of RAD space, so use this last version of 1#ADD to create a file as shown in Figure 17.

[1FIN \
[i#enD N\

| 1#ADD D1,5AMP,20,80,B AN
| 'RADEDIT N\
———=1{ IPAUSE INTERRUPT KEY-IN SY,$ \

1JOB \

Note 1: Since the permanent file directories are software write-protected, an SY key~in must be initiated
before updating or initializing a file directory if the area has an SY or FG protection code.

Note 2: For RADEDIT, !#END is equivalent to |EOD.

Figure 17. Create a RAD File

How to Create a File

HOW TO DELETE A FILE

A file is deleted by the Editor 1#DELETE command. Any files may be deleted from the permanent file directory. To
delete the SAMP file used previously, the deck structure shown in Figure 18 would be used.

[!FIN \
| 1#EnD AN

| 1#DELETE D1,5AMP \
| I1RADEDIT AN
[IPAUSE KEY-IN SY,S \

1JOB \

D1 is the area the file is located in and SAMP is file to be deleted.

Figure 18. Deleting a File

If the file deleted is the last file within the area, the space is automatically recovered without squeezing (see
"How to Squeeze a RAD AREA™ later in this chapter).

HOW TO TRUNCATE A FILE

The Editor !# TRUNCATE command is used to delete unused but allotted space in a file by setting the EOT pointer
equal to EOF.

Let's examine a hypothetical case. A blocked sequential file called BFILE of 100 records has been allotted. Thus,

i*ADD D]1,BFILE, 100,40

Fifty records are copied into the file via the Utility COPY command (see Chapter 7 of this manual) and an EOF
pointer is set at the end of the 50th record. Truncate the file as shown in Figure 19.

The resulting file will only contain 50 records (even though 100 records were allotted on the 1#ADD card) because
the 1#TRUNCATE card cut down the size of the file to the actual number of sectors required to contain the 50 rec-
ords by moving the EOT pointer equal to the EOF pointer.

How to Delete a File/How to Truncate a File

31

32

| IFIN AN

[1#enD \
———{ I#TRUNCATE D1,BFILE AN
[rrRADEDIT AN
| 1PAUSE KEY-IN SY,5 AN
1JOB AN

Figure 19. Truncating a File

However, the space deleted via the |#TRUNCATE card is still trapped; that is, it cannot be accessed either by other
files or file BFILE. Since file size reduction has already been performed, the RAD area must be "squeezed".

HOW TO SQUEEZE A RAD AREA

To release unused space in a truncated file and to recover space occupied by deleted files so that the system
can use it, the RAD Editor !|#SQUEEZE command is used. This moves all files forward dnd leaves empty space
at the end of the area. It is inserted after the I#*TRUNCATE card as shown in Figure 20, but note that it is
not always necessary to truncate a file before squeezing an area.

[IFIN AN
[!#END AN
—{ 1#SQUEEZE DI \
AN

——| |#TRUNCATE D1,BFILE

[1RADEDIT \

[1PAUSE KEY-IN SY,S \

1JOB AN

Figure 20. Squeezing a RAD Area

How to Squeeze a RAD Area

After the processes illustrated in Figures 19 and 20 have taken place, you may wish to know how much space
your file actually takes in the designated RAD area. To find out, the Editor 1*MAP command is used as shown
in Figure 21.

| [!fi‘tsr!\::rl)l\I \;TW

—| 1#MAP DI AN

| 1rADEDIT AN
1JOB N\

Figure 21. Output a RAD Map

This map provides a list of all the files in D1 area with their corresponding records and file sizes as shown in
Figure 22.

AREA D1 PCEV 9C B3T t19F0 EBT 1ASC

NAME FORMAT WRITE FBRE RECBRD TRACK SECT BBT EBF EBT
RFILE R NN 0168 033E 00C2 19F2 FFFF 19FC
UFILE U NB N 0163 033F 000% 19FC FFFF 1A06
SAMPA R sy N 0078 0340 0006 1A06 FFFF 1A0A
CKPTAI® R NB N 0168 0341 0CC2 1A0A 1AOC 1AOC
AlS R N TN T 0168 0341 0004 1A0C 1AOE 1AQE
SIFILE B BG N 0078 C341 00C6 1AOCE 0009 1A11l
BFILE] N8 N 0078 0342 0001 1A11 FFFF 1A15
‘SAMPB R 7T FGT TN T 00BAT T 03427 00C5 1A15 FFFF 1A29
ESD
ET=000405

11712771 1214 BKs00C+13,FG=000+00,1Ds000400

Figure 22. RAD Area Map Example

RAD area maps are a necessity, of course, when multiple users are creating files in a given area. Otherwise, the
individual users would not know whether space is available in the area, whether a file with the same desired name
already exists, etc.

HOW TO ACCESS A FILE

Now that we have created a file and initialized it with data, the problem of how to access the file remains. Files
are read or written in background user programs in the same way that line printers, card readers, or other devices are
accessed. The linkage between RAD files and your program is provided via !ASSIGN or commands inserted into your
program deck. (See the !ASSIGN discussion in Chapter 2 of the RBM Reference Manual.) Foreground users access
data files through Monifor service routines (Read/Write) coded into their programs.

How to Access a File

33

34

HOW TO CREATE A PROGRAM FiLE

Before discussing th: technique for creating a program file that can be called into core for execution, a quick
review of the two methods of accessing a file for either a Read or Write operation is necessary.

SEQUENTIAL ACCESS

When you use sequential access, you access a RAD file on a record-by=record basis (see definition of record given
previously in this chapter) in exactly the same way that you access a data file on magnetic tape. This method can
be used for blocked, unblocked, or compressed files.

RANDOM ACCESS

To perform random access you must supply the relative record number of the start of the Read/Write request and the
number of bytes to be transferred, where "relative record number" is the number of a granule relative to the start of
the file for an unblocked file, or the relative logical record number relative to the start of the file for a blocked
file. (A granule is defined by the user to be one or more sectors.) The default (and typical) size is one sector for
unblocked files. Addressing files by granules allows direct access to be independent of the RAD sector size.

CREATION PROCEDURES v

All files are created in the same manner regardless of the functions for which they are to be used. This reduces gen-
eral rules for program files to the following:

e To save a load module (executable program) in a user—defined file, the file must be created with an Editor
1# ADD command before a load module is stored into it.

e The defined file must be a random access file.

When you call in the Overlay Loader via the |OLOAD command to create a load module the Loader will print out
the size of the load module on the load map, assuming you used one of the Loader map options. This size is given
in sectors and since a load module is a random access file, this is the value to use as the FILE parameter entry on
the Editor !1#ADD card.

If you do not know the size of the load module until after it has been created, how do you know how to 1#ADD a
file of precisely the right size? There are two solutions:

1. Create the module on the OV file, which is the default output file for load modules. Look up the granule
size on the resulting load map and use this number as the FILE parameter on an Editor !#ADD card. Use an
Editor 1#FCOPY card to copy the OV contents to the newly created file.

Example:

Assume the load module created with the Overlay Loader used 20 granules in the RBMOV file. Allot a file
called FTEST of 20 granules in area D1 and copy OV out to the new file. The deck structure given in Fig-
ure 23 would copy OV to the new file.

How to Create a Program File

[1EOD AN

——| 1#FCOPY OV,T1 \

| 1IRADEDIT \
[1ASSIGN T1=FTEST,D1 \

| 1ASSIGN OV =RBMOV,SD \

| 1eoD AN
— [1#ADD D1,FTEST,20,0,R \ i

| IRADEDIT AN
| 'PAUSE KEYIN SY,S \ —
1JOB \ B
-
-

Figure 23. File Creation with Specific Granule Allotment

Use an !*ADD command to create a file that you know is sufficiently large for the load module. Put the load
module into this file via an IASSIGN command prior to an IOLOAD command in the command stack, and then
follow with Editor I# TRUNCATE and 1#SQUEEZE commands that have a corresponding file specification.

Example:

Assume a new file called TEST1 in area D1 is to contain a load module of unknown length. The deck struc-
ture given in Figure 24 would allocate all available space to the file, load the module into the file, and
then recover the unused space.

IEOD \

'Source deck

N !J[Ol ;(SYMBOL \\
O\

[1EOD
—| 1#ADD DI,TESTI,ALL,0R AN
[IRADEDIT \
[1PAUSE KEYIN sY,5 AN

1JOB \

Figure 24, File Creation with Granule Over-Allotment

How to Create a Program File 35

36

| 1FIN AN
[1eoD N\
| 1#sQUEEZE D1 \

| 1#IRUNCATE DI1,TESTI AN
| 1raDEDIT AN
| 10D AN

| 1sROOT ,,GO,1 AN
| 10L0AD AN —
——| IASSIGN OV=TEST1,D1 \ —

Figure 24. File Creation with Granule Over-Allotment (cont.)

HOW TO CREATE A NEW LIBRARY

A library consists of six files: MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, MODULE. These files are allocated in

either the System Library (SL) or User Library (UL) areas, as appropriate (these are the only two areas that can have
libraries), and the files must have the exact names given above and be in random format.

For instructions on how to compute the sizes of each file for a particular library, see the RAD Editor chapter in the
RBM Reference Manual.

All library files are random files. In the !*ADD command example

1*ADD SL,MODIR,6,5,R,SY

the "6" parameter following the file name MODIR means a size of six records in the SL area. Since"RECORD" is S,
you have specified that you wanted RECORD =SECTOR size. The FORMAT "R" specifies an unblocked random access
file. The Write parameter "SY" means write permitted when the SY key-in is in effect. When computing the sizes
of the files from the formulas in the RAD Editor chapter in the RBM Reference Manual, remember that the results will
be in granules or the number of records needed. If you do not have enough information to compute the size of each
file, allocate them a greater number of sectors than are required.

After all six files have been created with #ADD commands, the #LADD command enters the library routines into
the defined four files, depending on the library code parameter on the 1#LADD command: Basic (B), Main (M), or
Extended (E) as defined in Figure 25. The same basic method is used to set up the User Library.

Note: [f you ever plan to add new programs to a library or replace existing library routines with larger rou-
tines, omit the 1#TRUNCATE command.

How to Create a New Library

| 17EnD AN
| !#SQUEEZE SL
[1#TRUNCATE sL AN
Object rﬁodule
I#LADD SL, ,M

Object module
—| !#LADD SL, E

[Object Module
—| 1#LADD SL,,B

| 1#ADD SL,MODULE,ALL,SR,SY
[!*ADD SL,MOFRF,2,5R,SY

| 1#ADD SL,BDFRF,2,5,R,5Y
| 1#ADD SL,EDFRF,2,5,R,SY
| 1#ADD SL,EBCDIC,6,5,R,5Y \

| 1#ADD SLMODIR,3,5,R,5Y \
| IRADEDIT .
t | IPAUSE KEYIN SY,S \ B

1JOB AN —

"Note that SY,S Key~-in is required fo write into the SL area. This would also be required
for creating a library in the UL area.

Figure 25. Input Library Files

HOW TO ADD A LIBRARY ROUTINE

Since the library already exists, the method for adding a new routine is quite simple, as illustrated in Figure 26.

This example is essentially the same deck structure used to create the library, except that you ADD onto the end of
the existing library files. The example assumes that BI has been assigned to the card reader.

How to Add a Library Routine

37

[1N IRN

Object Module (RDATA IDENT)

[I7LADD SL,RDATA,M \
| IRADEDIT \
[IPAUSE KEY-IN SY,S .

1JOB \\ B

Note: The #LADD command adds an object module to the designated library.
The "identification parameter identifies the object module being loaded.

Figure 26. Add a Library Routine

HOW TO DELETE A LIBRARY ROUTINE

To delete a routine from a library it is first necessary to determine the name associated with each routine in that li-
brary via a RAD Editor 1#LMAP command. Besides listing a name for each routine on the RAD map, it also lists all
other entry points or data words in each routine.

The !#LDELETE command deletes an object module specified in the identification parameter from the designated li-
brary as shown in Figure 27.

| 1eoD AN
| 1#END AN

———{ 1#LDELETE SL,LABS AN
| RADEDIT AN
[1PAUSE KEY-INSV,S \

1JoB AN

Figure 27. Delete a Library Routine

38 How to Delete a Library Routine

HOW TO RECOVER UNUSED LIBRARY SPACE

It is sometimes desirable to recover previously used file space and to make it available for storing other library
routines after a routine has been deleted. The !fLSQUEEZE command is used to release the space. The
I*LSQUEEZE command shown in Figure 28 would restore the space formerly occupied by the LABS routine in
the System Library files. This command does not change the file sizes allocated but compacts the data in the

files.

| [#ELF;N \\

——[1#LSQUEEZE sL \\
[1#LDELETE sL,LABS AN

[irADEDIT \\
| 1PAUSE KEY-IN SV,S AN

1JOB \

Figure 28. Library Space Recovery

HOW TO REPLACE A LIBRARY MODULE

During the evolution of a routine in a User Library, updates are very common in the development of the final oper-
ational version. The !*LREPLACE command is used to replace an existing intermediate object module with a newer
object module bearing the same identification. This command will not recover the space occupied by the replaced
routine.

Example:

Assume a BASIC library routine called "BLIB" that is located in the User Library. To replace this routine with an
updated version, the deck structure shown in Figure 29 would be used. (The example assumes that BI has been
assigned to the card reader.)

How to Recover Unused Library Space/How to Replace a Library Module

39

| 'FIN Q

Object module

—— 1#LREPLACE UL,BLIB,B AN
[1RADEDIT AN

[1pAUSE KEY-IN SY,S \

1JOB \

Figure 29. Replace Library Object Module

Note that the space used by the original BLIB would not be recovered, and that the new BLIB would reside at the
end of the current library.

40 How to Replace a Library Module

9. HOW TO BUILD AN OVERLAY PROGRAM

Use of the Overlay Loader with nonoverlay programs has been covered in the examples given in the FORTRAN and
Extended Symbol chapters, and it is now necessary to discuss some of the ways the Loader can be used to create seg-
mented (overlay) programs.

The only purpose in overlaying a program is to minimize core size requirements. Since there is a slight degradation
in response time for each level of overlay within a foreground program, it is obvious that such programs should not
have any more overlay levels than are absolutely necessary.
Before discussing overlay techniques, the term ROM must be fully defined:

o A ROM is a Relocatable Object Module, and is the only type of object module the Overlay Loader will

accept to form the load module. "Relocatable" means that the execution location in core for the module
is determined by the Overlay Loader at load time.

The other type of object module is absolute; that is, a fixed execution location is determined by the user at assembly
time through use of the Extended Symbol (or SYMBOL) ASECT and ORG directives. Absolute object modules are
loaded by another processor called the Absolute Loader, and are always executed in the same predetermined loca-
tion unless reassembled.

Every reference to "object module" in this manual always means ROM, and this term is used by the Overlay Loader
when it outputs a load map or diagnostic message.

The material and examples in this chapter do not encompass every option available to the Loader user; rather, the
chapter presents what constitutes an overlay‘job and the interface between basic structures and several Loader con-
trol commands. A study of the examples will make the significance of other Loader commands and options (i.e., the
I1$TCB command described in later chapters) more apparent,

The presence or absence of a single option on the !OLOAD command (F), causes the Loader to define the resulting
program as either background or foreground (B is the default case). All of the examples below are relevant to both
foreground and background programs.

Assume the following program:

1. A Main program that calls in subroutines A, B, and C.
2. Subroutine A does not reference subroutines B or C.
3. Subroutine B does not reference subroutines A or C.

3. Subroutine C does not reference subroutines A or B.

This program could be loaded into memory in nonoverlay form to appear as

L Main | A 1 B | C R

low memory ‘[—| high memory

How to Build an Overlay Program

41

42

However, if the program was segmented, it would take up less memory and would appear as

A |
|

(segment 1)

L Main B 1
" (root segment 0) (segment 2)

C
(segment 3)

low memory | — high memory

where subroutine A is not residing in memory (saved on the RAD) when subroutine B is in memory, and vice versa.
Note that the root segment is always resident and is designated as segment 0. The Main program (root segment) has
the responsibility of calling the appropriate segment into memory (see "Communication Between Segments" later in
this chapter).

Assuming the object modules are residing on the GO file in the order Main, A, B, and C, the structure could be
created by the following set of commands which would create the overlay structure pictured above:

['XEQ \
| !$[I.V\I?D \\

[155eG 3,0,G0,1 \
| 1$£G 2,0,60,1 RN
[1$5EG 1,0,GO,1 \
| 1srROOT ,,GO, 1 \
IOLOAD 3,8 AN B
-

The structure is defined by the 1$ROOT and 1$SEG cards. The first !$SEG card defines segment number 1 to be
connected to segment number O {oot). The second and third I$SEG cards correspondingly define segments number 2
and 3, also connected to the root.

For another example, assume the following program:
1. A Main program that calls subroutines A and B.
2. Subroutine A calls subroutine C.
3. Subroutine B calls subroutine C.

4. Subroutine A does not reference subroutine B.

How to Build an Overlay Program

This program could be segmented in the following manner:

A |
(segment 1)

| (root)"

B
(segment 2)

low | ! high

allowing C to be available to both subroutines A and B without an extra copy of C being necessary. However, as-
suming the order on the GO file is Main, C, A, and B, then using the previous control command string would give
you the unworkable structure

C

(segment 1)

| Main A
(root) (segment 2)

(B I

segment 3)

which does not allow the required calls. Since this structure does not allow A or B to call C and then to continue
upon C's return (C will wipe out A or B in memory), it is obvious that the simple structure we used above cannot be
used to solve this problem.

The following control cards could be used instead:

[1$SEG 2,0,G0,1 AN
[1$5£G 1,0,G60,1 AN
[1sr00OT ,,G0,2 AN
IOLOAD 2 \

These commands put the first two routines on the OV file in the root, and one routine each in segments 1 and 2.
Full understanding of the use of the ISROOT and 1$SEG commands is imperative for segmenting programs. Assume
the following program:

1. The Main program calls in subroutines A and B.
Subroutine A does not reference routine B.

Subroutine B does not reference routine A.

MW

Main, A, and B are to be input via the card reader (the binary input (BI) device).

How to Build an Overlay Program

43

The following command structure is needed (assuming the commands are also read in from the card reader):

Object module B
1$SEG 2,0,BI,1

Object module A’
1$SEG 1,0,B1,1 \

Object module Main

| 1SROOT ,,BI,1 \

10LOAD 2 \

Whenever more than one module is needed, the number is required, or a blank may be used. If no number is speci-
fied the Loader expects to encounter an |EOD command following the object modules before any other Loader sub-
command is encountered. Let's consider a slightly more complex example.

Assume the following program:

1. A Main program that calls subroutines A and B.

2. Subroutine A calls subroutine C, D, and E.

3. Subroutine B calls subroutine C.

4. Subroutine D calls subroutine C.

5. Subroutine E does not reference any routine.

6. Main, A, and E are on magnetic tape; oplabel MO.
7. Cand D are on magnetic tape; oplabel M1.

8. Bis on the GO file.

44 How to Build an Overlay Program

Thus, the overlay structure is

A

D

(segment 1)

B

(segment 2)

E

(segment 4)

(segment 3)

1 high

low |
F

and the control command sequence could be

[1SEND

[155G 4,0,GO, 1

| 1$SEG 3,1,M0,1

[1$SEG 2,1,M1,1

[1$SEG 1,0,M0,1

[1SLD M1,1

| 1sr00T , ,Mo,1

| rsmp

I1OLOAD 4

Whenever the overlay structure is such that some segments link to segments other than the root, there is an order to

the 1$SEG commands that must be followed. This can be illustrated by the following example:

_]

T

(root)

(segment 1)

(segment 2)

(segment 4)

(segment 3)

How to Build an Overlay Program

45

As soon as segment 1 is defined, all segments linking to it (segments 2 and 3) must be defined via 1$SEG commands
before 1$SEG 4,0, can be encountered.

Let's take a look at another example:
1

(segment 3)

(segment 2)

(segment 1) (segment 4)

L (segment 5)

(root)]
(segment 7)

(segment 8)

(segment 6)

.

(segment 9)

-t

(segment 10)

In this case, after a 1$SEG 1 command is input, either segment 2 or 5 may be defined. However, whenever seg-
ment 2 is defined, then all segments linked to it must be listed next (i.e., segments 3 and 4). There are several
deck structures that could be used to construct the overlay above. One of these deck structures is shown below:

These two segment defini-

tions could be interchanged .
since no other segment links [$SEG 4,2,xx,1 \
to them. [1$SEG 3,2, —\L

[1$SEG 2,1,%x,1 AN

| 1SSEG 5,1,xx,1 AN
['$SEG 1,0,xx,1 AN
[1SROOT , xx,1 \

10LOAD 10 \

where xx denotes the oplabel where the module resides

46 How to Build an Overlay Program

Another deck structure is as follows:

[1$SEG 5,1,%x,1 \
[1$SEG 4,2,xx,1 \
[1$SEG 3,2,xx,1 AN
[1$SEG 2,1,xx,1
[1$SEG 1,0,xx,1 .

[1$ROOT , xx,1 AN

10LOAD 10 \

However, the following deck structure cannot be used since all segments linked to 2 must follow the !$SEG 2,1,xx,1
command:

[185EG 3,2,xx,1 \
| 1$SEG 4,2,xx,] AN

{1$SEG 5,1,xx,

[1$SEG 2,1,xx,1 \\
| 1$SEG 1,0,%x,1 AN
[1sROOT , xx,1 AN

TOLOAD 10 AN

There is no general rule regarding the actual numbers selected to designate segments. Segment numbers may range
from 1 to 255 and may appear in any order. The segment numbers are needed for communication between the user
program and the Segment Loader during execution.

How to Build an Overlay Program 47

COMMUNICATION BETWEEN SEGMENTS

Since the primary objective of the RBM operating system is to provide fast response and processing for real-time
users, there is no automatic loading of overlay segments as the result of a reference to a routine within the segment.
If the root only occasionally uses segment 2 in the following structure, then it can call it in, use it, and continue
on without having waited for segments 1 and 20 to be brought in.

(segment 2)

(segment 20)

—
(segment 1) (segment 87) !

1]
!

! (root) (segment 14)

(segment 17)
This permits the real-time user to manage the overlay process in the most efficient manner for a given program.

The exact procedure for calling in segments is different for the FORTRAN user and the assembly language user.

FORTRAN SEGMENT CALLS
A FORTRAN user calls in a segment with the statement

CALL SEGLD (1)

or
CALL SEGLD (1, J)

where
1 is the segment number.
J is the file from which the segment is to be loaded.

In the case where J is not designated, the PI (processor input) file is assumed.

However, a call to SEGLDX causes an overlay segment to be loaded and control transferred to the transfer address
of the segment. A call to SEGLDX has the form

CALL SEGLDX (I)

or
CALL SEGLDX (I, J)

where
I is the segment number.
J is the file from which the segment is to be loaded.

In the case where J is not designated, the PI (processor input) file is assumed.

48 Communication Between Segments

ASSEMBLY SEGMENT CALLS

Assembly language users are provided with system calls for segment loading and have a choice as to how to load
segments. They may

1. Load the segment and return.

2. Load the segment and transfer to the "starting address" of the segment upon completion of the load. The
"starting address" is defined by a label on the END card of the assembly, or the FWA (first word address)
of the segment by default.

3. In foreground, request the segment to be loaded and do not wait for the load to take place. Instead, spe-
cify a "loading-complete" receiver, which would fransfer to a specified address when the 1/O interrupt be-
comes active (any processing performed by the "end-action" routine should be kept as short as possible to
prevent degradation of response time for lower-priority interrupts).

SEGMENT COMMUNICATION USING COMMON AREAS

Blank COMMON

Both FORTRAN and Extended Symbol users can define blank COMMON either in their source code or through the
cmn parameter on the OLOAD card.

In allocating COMMON for background programs, the Loader compares the cmn parameter with the first nonzero
COMMON size allocation value encountered in loading and employs the larger of these two values. The COM-
MON base is set by subtracting the COMMON size from the upper limit of core memory.

For foreground programs having blank COMMON, cmn denotes the base (i.e., first word address) of COMMON.

In this case, the effective upper limit of the program is cmn plus the [argest COMMON size allocation value en-
countered in loading. For foreground programs in which COMMON is allocated but in which cmn has not been spe-
cified, the COMMON base is set by subtracting the first nonzero COMMON size allocation value encountered from
the upper limit of nonresident foreground memory. Foreground programs that have no COMMON may use the cmn
parameter to specify an upper limit for the program, if the address specified by e¢mn is higher than the root FWA. If
the program exceeds the limit, the Loader aborts. The default value of the upper limit for foreground programs with-
out COMMON is the upper limit of the nonresident foreground area.

Foreground loads may specify the cmn parameter at a lower address than the root FWA; in which case, the end of
nonresident foreground is the program upper limit. A check is made at the end of the load to determine whether the
COMMON allotment overlaps the root. If it does, the warning message "OLERR CO" is printed out but no error
severity level is set.

See also the subsection "Blank COMMON Storage" in Chapter 8 of this manual.

Labeled COMMON

Labeled COMMON is defined in the source code and labeled COMMON areas precede the module in which they
are first defined.

e A fresh copy of the labeled COMMON is brought into memory as each segment with a labeled COMMON
is loaded. This means that any data the programmer wishes to save between segments that occupy the same
memory area should be either in blank COMMON, or in labeled COMMON in a segment that does not get

overlaid while the data is still pertinent.

e The FORTRAN IV compiler is capable of using labeled COMMON directly, but Extended Symbol must first
REF the labeled COMMON block, which will give the start address of the block; access isachieved through
the source code.

Communication Between Segments 49

50

HOW TO READ A LOAD MAP

The primary intention in outputting a load map is to simplify the programmer's job when a set of programs fails to
satisfy all external references. Additionally, various size and location information is output to simplify the task of
file and core allocation. The Load Map shown in Figure 30 is the most extensive of the map options and is produced
by the control command $ML.

For the I$MP command, the same information is output except for the Public Library and Monitor service DEFs (the
fist of names between the lines marked OVERLAY TASK and ROOT), and Library symbols (those denoted by an L
immediately to the right of the symbol name; X:ERROR, for instance).

The 1$MS command outputs only the header lines; that is, the lines marked OVERLAY TASK, ROOT, SEGMENT,
ERRSEV, and END MAP.

All size and location data is in hexadecimal. The terms "core location” and "address" in this discussion refer to
core locations at execution time.

The OVERLAY TASK line gives information about the entire overlay cluster. From left to right, the various items
have the following meaning:

BA: means a background program; foreground programs cause "FO" to be printed. A map will show
either BA or FO.

ORG: means first (lowest) core location of the program's temporary stack (see RBM Reference Manual).
HLOC: means highest core location of the overlay cluster.

CBAS: means first core location of the blank COMMON area.

CslIZ: means size of the blank COMMON area in words.

UMEM: means unused memory, the difference between HLOC and CBAS (the amount of memory available

to the Monitor for blocking buffers).
SECT: means the number of sectors required by the overlay cluster in a processor file.
Following the first line is a list of all the DEFs in the Public Library. These are flagged by the P to the right of the

name; the M indicates that this routine was placed in the Public Library in the Main mode. The other possible modes
are Extended and Basic and are flagged by an E and a B, respectively.

The remainder of the DEFs in this list are the various Monitor service routines. The numbers to the right of the Pub-
lic Library DEFs and the Monitor service DEFs are their respective core locations in the Monitor's "Transfer Vector
Table" (see Chapter 4 of the RBM Reference Manual), which is a table maintained by the Monitor for its own use in
locating these routines.

This list will not change (for any load with an !SML command) unless a user changes the Public Library, in
which case only the Public Library DEFs will change.

The ROOT line contains the following information:

ORG: means the first core location of the root's program section for a background program, or the loca-
tion of the TCB for a foreground program.

LWA: means the last core location of the root (including whatever library routines are in the root).

How to Read a Load Map

MAP
AVERLAY TASK

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DefF
DEF
DEF
DEF
DEF
DEF
DeF
DEF
DEF
DeF
DEF
DEF
DE*F
DEF
DEF
DgF
DEF
DEF
QEF
DEF
DEF
DEF
DEF
DEF
DEF

R88Y BRG=6050

DeF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
P REgF
P REF
DEF

SEGMENT IDENT
0001

DEF
DEF
PEF
OgF

BA 9RGe6000 HLBC=61F3 CBASsFO20 C81Z=0000 UMEM=8EQC SECT=0006

PLISECT
PL:RDCHK
PLIWTCHK
PLtREAD
PLIWRITE
MIiFSAVE
DIKEY
DiCARD

D i SNAP
Mi1SAVE
MIEXTIT
MIIBEX
MIREAD
MIWRITE
viCTRL
MITERM
MIDATIME
M3 ABSBRT
MIHEXIN
MEINHEX
MICKREST
MiLEAD
M9PEN
MsCLASE
MiIDKEYS
MIWALT
MISEGLD
MEIDEF INE
M$ASSTGN
MIBPFILE
M3IPAP
MIRES
MDY\
MIRSVP
MiDew
MsCeC

LiwAs61B7

X $ERRBR
XIDIR
LIDIR

L SERREGR
M PUSH
X : CK
LeCK
Li33R3
Li33R?
L133Ry
aviLaaD
SEG2
SEG1
sUB1Y

NBDE ARG
0000 €1B8

M:SR
AINY
LiAINT
SEG1

1FB4
1FBS
1FBé
1FB7
1FB8
c47C
1FoB
{FoC
1FaD
1F 96
1F97
1F9E
1FAC
1FAL
1FA2
1FAG
1FA3
1FASB
1FAG
1FA7
1FA8
1F 98
1FAS
1FAA
1¥ AB
1FAC
1FAD
1FAE
{FAF
1FBC
1r81
1FB2
1FB3
i1Fo9
1F3A
1FoF

TT TTT
XXX

LEN2Q168 TRA=A050

6114
6UED
6CED
114
617F
&07A
&C7A
4061
6065
6G6S
6082
cco2
0001
6051

[l R Ko I sl alb aull ot Bl
mopmnee N ng
TETTXITIITIIIX

o
X
>

61E3
«1BB
&£1BB
4188

—rrr
DO W
T ® X

/ LEN TRA
1F3 ©03C 618K

Ay iLEAD=6052

Figure 30. Loap Map Example

How to Read a Load Map

51

52

SEGMENT IDENT NBDE ©RG Lwa LEN TRA SEV

FRRSEV= 0000

0002 0000 61B&8 610B 0024 61E8 0000

DEF X : 3N Ls M 4#1C3
DEF L3N L sM 61C3
DeF MIgQR L s M 61CB
DEF ABS L s 8B 6189
DEF SEGp 1 61B8

FND “MAP
ET=C00¢33
10720771 1555 RKa000e35,FG=000+02,1D=000+00C
FIN
Figure 30. Load Map Example (cont.)
LEN: means the overall root size in words.
TRA: means the root's entry point, which is determined by the argument of the END statement in a
program written in assembly language.
SEV: means the error severity level; the highest error severity encountered in loading the root {either
assembled or Loader-generated).
OV:LOAD: means the OV Load Table location, which is a 5-word-per-entry table generated by the Loader

at the end of the root's program section. It contains information to allow the Monitor to locate
and load into core the segments of the program at run-time. If there is only a root, no OV Load
Table is generated, and instead of a core location, the word NONE is printed.

Following the ROOT line is a list of DEFs and REFs encountered while loading the root (including library routines).
Each symbol (name) is error-flagged or identified by one or two characters as follows:

For DEFs:

For REFs:

D means duplicate.

U means a DEF statement was declared (in the code) but no value was given (there was no label
in the routine matching the argument of the DEF statement).

LC means a Labeled COMMON block was defined.

U means unsatisfied; the Loader could find no matching DEF while loading this path.
P means a primary Reference (REF).

S means a secondary Reference (SREF).

To the right or each name are from one to three characters denoting the input source for that name. An "L" signifies
a library file, "S" signifies the System Library (a "U" would signify the Users Library and a "P" would signify Public
Library), and a "B", "E", or "M" signifies Basic, Extended, or Main mode respectively. An "I" to the right of a
DEF means that it was encountered during the program load of this segment; for a REF, the "I" means that a match-
ing DEF was found in a higher level segment.

How to Read a Load Map

The numbers in the rightmost column denote the first core location of the routine containing that DEF or the segment
number containing a DEF which matches that REF; i.e., primary REF SEG1 is "satisfied" in segment number one.

Note that there are several pairs of Library routines whose core addresses are the same, e.g., X:DIR and L:DIR.
This signifies that these are different DEFs (entry points) in a single module.

When the Loader satisfies an external REF in the same segment, the symbol table entry for that REF is changed to a
DEF. Thus, although the program whose map is illustrated contained a REF SUB1 in the root, it is not printed since
a DEF SUB1 was encountered during root loading.

The information in a SEGMENT line differs from that in a ROOT line in three items, as follows:
1. There is no OV:LOAD entry since only the root has an OV:LOAD table.

2. The number under the IDENT is the first parameter on the !$SEG card for that segment. It is the Seg-
ment Identifier.

3. The number under the "NODE" is the second parameter on the !$SEG card. It is the segment identifier of
that segment to which this segment is connected.

The listed information following the SEGMENT line is exactly similar to that following @ ROOT line.

The ERRSEV line shows the highest error severity level encountered during the entire program load and the END
MAP line is self-explanatory.

LOADER PROCESS SUMMARY

During the loading process, the Loader must exist in background core together with the absolute load module version
of the segment being loaded, plus various tables that are required for linkage. One such table is the Segment Table,
which requires 10 (N+2) cells, where N is the number of segments specified on the {OLOAD card. The Segment
Table is located at the highest available core locations.

Below the Segment Table are the various Symbol Tables, all of which have the same entry format. Each entryrefers
to a specific definition or reference. The entries are of variable length, from five to eight words, depending on the
number of characters in the DEF or REF symbol.

The Permanent Symbol Table is a set of DEFs of the Monitor service routines; typically 230 words in length where
there is no Public Library. If a Public Library exists, a Permanent Symbol Table entry is generated for each DEF in
the library, again from five to eight words in length.

Below the Permanent Symbol Table, the Loader builds the Root Symbol Table, working from high core toward low
core. The Loader is also building the absolute core image of the program, working from low core toward high core.
(If the program should meet the Symbol Table, table overflow occurs and the load is aborted.) Whenever a REF is
seen in the root, the currently existing Symbol Tables are searched for a satisfying DEF. If none is found, the REF
is added to the root symbol table.

When the program portion of the root is completely loaded, it is written to the OV file, and the specified or default
libraries are searched for any unsatisfied REFs in the Symbol Table. When all the library DEFs that match any un-
satisfied REFs have been loaded, the library portion of the root is written to the OV file. Segment loading then
proceeds similarly to the root loading, except that the program and library portions of each segment are loaded to-
gether, and then written to the OV file. The Segment Symbol Tables are built below the Root Symbol Table (again
working from high toward low core) until a new path (or portion of a path) is begun, at which time that part of the

Loader Process Summary

53

Segment Symbol Table that refers to the just-completed path is written to a temporary file (oplabel XI). Assuming
no overflow or other problems are encountered, this process continues until the program is completely loaded. Then
PASS2 of the load process commences, where all forward REFs are linked and any requested maps are output.

The important factors in segmenting a program are these:
e Program segment sizes (including library code)
e Number of segments
e Number of DEFs and REFs in each ROM

o Response time requirements

The diagram in Figure 31 illustrates the layout of core during the load process.

High
'9 Control Card Buffer

Segment Table

Monitor Service Routine Table

Public Library Table

Root Symbol Table

Segment Under Load

Overlay (= 3000 cells) Loader

Resident

Low Background

Foreground

Figure 31. Core Layout During Loading

54 Loader Process Summary

6. HOW TO USE MONITOR SERVICE ROUTINES

Most previous discussions and examples in this manual concerning communication with the Monitor have dealt with
control commands and key-ins used in the background job stream prior to execution of an operational program.
Monitor service routines are the means used by an executing program or task to request 1/O, privileged operations,
or other services from the Monitor. Service routines are the only means by which the background can perform 1/0
or privileged instructions. -

You request a Monitor service routine by establishing a pointer to an argument list, a return link such as a register
copy and increment (RCPYI), and a branch instruction coded into your source program prior to assembly, or com-
pilation. The techniques for branching to the service routines are primarily the concern of assembly language users,
since FORTRAN users normally call these services indirectly through FORTRAN Library routines. Note however,
that Xerox ANS FORTRAN has an in-line assembly language capability via an "S" in column 1, and this capability
permits branches to Monitor service routines without going through the FORTRAN Library.

There are three easy ways to access the various Monitor service routines. The first two are basically the same; that
is, by branching indirectly through a fixed RBM Zero Table location. These locations are obtained by referencing
the Transfer Vector Table for Monitor Services in Chapter 4 of the RBM Reference Manual. This table will supply
the address associated with the desired routine, and Note 1 in the same table gives the steps to follow when coding.

In small developmental routines, it is often convenient to use the actual Zero Table location, as in this call to

M:WRITE:

LDX =ARGLIST (pointer to argument list)

RCPYI P,L (return link)

B *X'CA' (indirect branch through vector location)
ARGLIST DATA X'3005', 'LO', BUFF, 18 (parameter list)
BUFF TEXT "bWRITE TO PRINTER'

However, in larger and more complex programs, it is often convenient to create a set of EQU directives that equate
mnemonically satisfying labels to the appropriate core locations, as follows:

V:READ EQU X'C9'
Definition of Zero Table locations
V:WRITE EQU X'CA!
LDX =ARGLIST
RCPYI P,L Program section: call to M:READ
B *V:READ

As shown above, the branch indirect is accomplished exactly as in the first example; the difference being only
one of convenience.

How to Use Monitor Service Routines

55

The third method is to reference the appropriate service routine at the beginning of each program element. This is
easier from a programming standpoint, since you need not know the fixed core locations. The Loader will create
the required linkage at load time. However, the cost of such simplicity is increased core requirements. During
loading, each REF creates an additional Symbol Table entry. (See the Overlay Loader, Chapter 7 in the RBM
Reference Manual and Chapter 5 in this manual.) Programs using this technique may require reloading when a new
version of the Monitor is installed. An example of this type of access would be

(Routine start)

REF M:READ, M:WRITE, M:LOAD,. ..

RCPYI P, X

B LABEL

DATA X'3801', 'X1', BUFF, 360, 2
LABEL RCPYI P,L

B M:WRITE

The above example also illustrates a slightly different method of entering the address of the M:WRITE argument |ist
into the index (X) register.

All of the examples described assume the existance of a set of register equates in the program of the form:

P EQU 1
L EQU 2
etc.

See Chapter 4 of the RBM Reference Manual for detailed descriptions and argument list requirements for each Moni-
tor service routine.

Figure 32 shows assembled examples of some of the most frequently used service routines (see also Chapter 9 in this
manual, "How To Use Standard Procedure Files"). Note that none of the examples are set up to be executed, but
only illustrate how Monitor service routines are coded within a program.

1 REF MIWRITEIMIREAD)MICTRLAMIDATIME, M2 ABBRT,MIHEXIN

2 REF MILBAD,MIBPEN,MSASSIGN, MISEGLDAMEDFFINE,MSRES

3 REF 8viLBAD

4 0001 A P EQU 1

5 ooo2 A | EQU 2

6 0003 A T EQU 3

7 £ 2

8 . THIS REUTINE WILL WRITE T8 TTY

9 »*

1o 0000 C85E A LDX =L IsTe

11 0001 75A1 A RCPY? Psl

12 0002 4CSD A B MIWRITE

13 0003 3005 A LISTL DATA X1300512'BC!»MESS,10
0004 D6C3 A
0005 0007 R
Q006 000A A

14 0007 40C8 A MESS TEXT ' Ht THERE!
0008 €940 A
0009 E3C8 A
000aA C5D9 A
0008 CS540 A

Figure 32. Monitor Service Routine Examples

56 How to Use Monitor Service Routines

15
16
17
18
19
20
21

61

62
63
64
6%

ooocC
000D
000E
000F
0010
0011
0012
0013

0038
003c
Q03p
003E
003F

0040
0041
0042
0043
0044
0045

Q04C
004D
004E
004F

0050
0051
0052
0053
0054
0055

Q056
0057
0058
0059
Q05A
0058
005C
005D
Q0SE
00SF
0060
00614
0062
0063
0064
0065
0066
0067
0068
0069
006A
0068

Qo06cC

case
75A1
4CS3
3006
€209
0013
0050

cs27
75AL
4C26
0038
cics

c824
75A1
4Ce3
co00
0045

881A
CR1A
75A1
4C19

cice2
C3C4
1096
89FD
7541
4Cl4

ca14
75A1
4C13
4000
ceCs
D3C5
4040
4040
0003
0000
O0OF
0000
003E
0000
0043
0000
O4D2
cicCe
0000
0000
0059
0000

CABA

> > > > P >

0> > >> > > > >

>» > >

> > >

MOMM>»>MOMIBMO™MB> >>>>> > >

E 3

LIST2

BUFF
-»

LIST3

INPUT

®

L1sTS

* =

THIS ROUTINE wILL READ AN EBCDIr CARD

LDX =LIsT2

RCPY] Pal

B MEIREAD

DATA X1300612'S1'IBUFF,80
RES 40

THIS WILL REWIND THE MT BNLINE

LDX =LIsT3
RCPY! P,l

B MiCTRL
DATA X138, 1Al

THIS RBUTINE WILL FIND THE TIME

LDX 3L IsT4
RCPYI Pal

B MIDATIME
DATA X1Co00!
ADRL TIMg

RES Y

THIS PRINTS ABPRT CADE AR AT LaC 1234

LDA 51234
LOX FrAg!
RCPY1 Pyl

8 MIABBRT

CONVERT RBUTINE

DATA YAB1,rcD!? TA BF CBNVERTED

LOD INPUT

RCPY1 Pol

B MIHEXIN ACC RETURNED WITW X'ABCD!'

T8 LBAD PRBGRAM FILE

LDX s IsT5

RCPY1 P,L

B MiL8AD WILL CAUSE THE LBADING BF THE RBST
DATA X14000! 8F TWE LB6AD MADULE 'FILE' AT THE

DATA, 4 'FILE ' CANTRBL TASK LEVEL

LPBOL

THIS RBUTINE WILL BPEN A FILE
LOX "LIsT6

Figure 32. Monitor Service Routine Examples (cont.)

How to Use Monitor Service Routines

57

58

98

100
101
102
103
104
105
106

006D
006E
00&F
0070
0074
0072
Ql2e
o127

0l28
Olzs
0l2a
0128
oliac
oi2p
olze
o1zfr
0130
0131
0132

01E8
01e7
Olga
01€9
QleA
01EB

0lEC
Olep
QlEE
QlEF
01F0
01F1
OlFe

01F3
01Fa
01Fs
01Fs
01F7
0lFs
01F9
0lFA
Q1FB
0lFC
QlFD

75A1
4CB9
4000
D7D8
oo7e

006F
0000

Cc8no
75A1
4«CCF
co05
D708
0132
C8C5
D3D3
D640
4040

C81l4
75A1
4C13
coo1l
pyce
0000

csa10
75A1
4COF
co40
ciC2
000A
0200

7581
4C03
0008
0000
0000
o128
0000
01E9
0000
O1EF
0000

> > > > >

m>» > > » >

>> > > > >

MODM™MDMOIME>> > >

L1STe

BLECKER

*

L1sT?

TEMP

L1ST8

*

LIsTe

®

RCPY! PaL BPEN A FILE WITH BLBCKING BUFFER
8 MIGPEN SPECIFIED 8F LABEL PQ IS ALREADY
DATA X140001s1PQ? ASSIGNED T8 FILE

DATA BLOCKER

RES 180 BUFFFR SIZE FBR 720X RAD

LPBBL

TH1S ROBUTINE WILL ASSIGN AN sPLABLE

LDX sL1sT7

RCPY! PslL

B Mi1ASSIGN NAMER HELL® IN USER PROCESSBR
GEN2221Cs% 3,0,5

DATA 'PGY,TEMP

DATA, & 'HELLE '

RES 180 USED BY MIASSIGN FBR AREA DICTIBNARY

THIS RBUTINE WILL LBAD A LBAD A SEGMENT INTA CORE

LDX = IsT8

RCPY! Pal BRING IN SEGMENT 1 AND

B MISEGLD TRANSFER CONTRGL T8 IT.

DATA X'CO0112'PY! P! 1s AUTBMATICALLY ASSIGNED
ADRL BVILEAD FAR BACKGRBUND PRBGRAM

THIS RBUNTINE WILL CREATE A RANDSM FILE

LOX sLIsT9

RCPY! P;L CREATE A RANDBM FILE 8F 10
DEF INE GRANULES IN BTe THE FILE WILL

GEN:3t6;1:6 6!0:1:0 VE AN 8P LABEL AB AND A

DATA 'ABt,10,720 GRANULE S1ZE BF 2 720X SECTBRS

RE-ENTRANT RBUTINE

RCPY] PaT

B *g+3 A REwENTRANT SUBRBUTINE CALL T8
DATA 5 MIRESQ THE SUBRBUTINE WILL STORE
DATA] TW8 VARIABLE IN TEMP STACK

DATA MIRES

END

How to Use Monitor Service Routines

Figure 32. Monitor Service Routine Examples (cont.)

1. HOW TO USE UTILITY

The Utility Processor is a highly flexible collection of media operation routines composed of six primary functions:
Copy, Dump, three Editors and a Control Function. Each function operates independently of the others but in con-
junction with a root called the Utility Executive. The Executive scans the IUTILITY control command for param-
eters and if none are found, it is assumed that only the control functions are desired by the user.

The Control Function Processor consists of file and record positioning commands, pause and message commands, an
assignment command, a write file mark command, and a prestore command.

When a specific routine is requested, the Executive checks to see that it is available, reads it into core, and ini-
tializes the required tables and flags. The Executive is used to process all utility control commands, which are
always read using the SI operational label.

The "prestore" function requires an additional explanation. Prestore is a condition wherein the control commands,
or sometimes data, is "prestored” in a temporary file (X5) for later processing. The prestore function may be in-
voked by control command (1 *PRESTORE) or, under certain conditions, by the requested routine. Termination of
the prestore function occurs when a 1EOD, I*END, or file mark is encountered. The conditions under which pre-
store is invoked will be discussed more fully in the description of the Utility routines.

All of the Utility routines share the use of certain operational labels: SI, UI, UO, LO, DO, OC, and Bl. Several
functions will optionally accept user-supplied operational labels, and these cases will be described in the individual
descriptions.

Before going on to discussions and examples of the various functions, three points should be mentioned about the
material covered in this chapter:

e When using any of the functions for the first time, you should supplement the material in this chapter with
study of the appropriate subchapter in the Utility section of the RBM Reference Manual (Chapter 9).

e All Utility examples in this chapter show IASSIGN cards with device mnemonic operational labels instead
of device file numbers in the device assignments. This is a SYSGEN-implemented capability that is rec-
ommended where a number of intermittent users are on the system, and particularly if a large number of
Utility jobs are being run. See Chapter 19, "How To Assign and Use Device Operational Labels" in this
manual for more details.

o In these examples, !EOD cards may be replaced by ! *END cards.

HOW TO COPY AND VERIFY

The Copy routine is called by a IUTILITY COPY command to copy information from one device to another device
and, optionally, to verify (compare) the copies. Note that RAD or disk pack files are also considered "devices".

Copy requires a |*OPLBS command to define the output device(s). This command must precede any file positioning
or processing commands, but must follow a 1*PRESTORE command (if present), and may follow I*ASSIGN commands.
Data to be copied is always input from the Ul device. The Ul assignment must be specified on an IASSIGN or
1*ASSIGN command, if different from the SYSGEN assignment. The copies are output on the device(s) specified
on the 1*OPLBS command. A command string may contain more than one !*OPLBS command. In the verify func-
tion, Copy uses oplabel X4 as one input, and the oplabel specified on the last prior *OPLBS command as the

How to Use Utility

59

60

other input; or, data from X4 is compared to an in-core buffer if the CORE parameter was used on the IUTILITY
COPY command. If Ul and SI are assigned to the same device (or device file number, if the device is a RAD), SI
is prestored. The number of records and files copied or verified is output to the DO device upon completion.

HOW TO COPY CARD READER INPUT TO LINE PRINTER

The example illustrated in Figure 33 will read one file from a card reader and list the contents of the file on

the line printer.

Copy input

[tEOD \
[1=cOPYF \

[1=OPLBS LP AN
[tUTILITY COPY AN

——| IASSIGN UI=CR \\

1JOB \

Figure 33. Copy Card Input to Line Printer

The ASSIGN card assigns Ul to the permanent operational label CR. Note that CR is a SYSGEN-defined label
assigned to the file number (DFN) associated with the card reader. If device mnemonic operational labels were not
implemented at the local facility, Ul would have to be assigned to the DFN (e.g., 2) or another less-easily remem-
bered operational label assignment to the card reader DFN.

The TUTILITY COPY card calls in the Utility Executive and the Executive calls in the Copy routine. Since the
CORE option is not specified, a copy of the input will not be stored in core memory.

The !*OPLBS card specifies that the output device for the copy is to be the line printer (LP). At this point, the
Copy routine determines if prestore should be invoked. Since the control commands (SI) and the Utility inputs (UI)
oplabels are assigned to the same device (card reader), prestore will be used. The control commands, through the
first lIEOD card, will be written on temporary RAD file X5. The control commands are now read and executed as
though oplabel ST had been assigned to X5.

The 1*COPY card causes the records from the card reader to be written to the line printer until one complete file is
copied (specified by the F parameter). If "R" was specified instead of "F", one record would be copied. The sec-
ond EOD card indicates end of file for the card reader inputs. The !EOD following the ! *COPY card not only
terminates prestore, but will cause Utility to exit when read from X5.

If we had wanted to copy from paper tape (for instance) to the line printer, the !ASSIGN card would be
changed to read UI=PT, and the input would be followed by an IEOD (NL). Since SI and UI would be as-
signed to different devices, no prestore would be used.

How to Copy and Verify

HOW TO COPY AND VERIFY FROM A RAD FILE TO PAPER TAPE

In the example in Figure 34, the input to be copied on paper tape is located in a user-defined permanent RAD file

called COPT in the UD (User Data) area.
{1EOD
|| *VERIFY F N

[1*REWIND UI N

[1*PAUSE LOAD PT TO VERIFY \

[1=copy F \
[!*OPLBS PT N

[rutiLiTy copy AN
[1AsSIGN x4=cOPT,UD AN

| 1ASSIGN UI=COPT,UD —
1JOB AN B

Figure 34. Copy and Verify File from RAD Area to Paper Tape

The first I ASSIGN command defines the input "device" from which the data is to be copied as file COPT in the UD
area of the RAD. The Ul device must always be defined when using the COPY routine. This may be done either at
SYSGEN or at run-time.

The second IASSIGN card defines X4 to also be file COPT in the UD area. This card also causes adjustment of the
byte count (from the COPT input) to 80 or 120 bytes before being copied to paper tape. The byte count depends on
the contents of the first byte in the data to be copied. Note that non=standard binary can be copied to or from
paper tape by specifying the byte count in the BIN mode on either the *COPY or the !*VERIFY commands. See
the COPY run-time discussion in Utility Chapter of the RBM Reference Manual.

The !*OPLBS card specifies that the output device for the copy is to be paper tape (SYSGEN-defined device mne-
monic operational label PT).

The ! *COPY card specifies that a file (F) is to be copied rather than a record (R), and by default, specifies that a
single file is to be read.

The !*PAUSE card causes the system to go into a wait state to give the operator time to rewind and load the paper
tape output for verification.

The 1*REWIND UI card causes the RAD to "rewind" to the beginning of the file prior to the verify process. Since
UI and X4 are assigned to the same device, the card could alternatively specify *REWIND X4.

The !*VERIFY card causes the two files to be verified (compared) to the end of one file (F).

The 'EOD card causes control to be returned to the Monitor.

How to Copy and Verify

61

62

HOW TO COPY MAGNETIC TAPE TO MAGNETIC TAPE

The example in Figure 35 will copy and verify all files from one magnetic tape to another until a double end-of-file
is encountered.

[1eoD N\
[1*UNLOAD M1 N\
[t *UNLOAD M0 AN
{ 1*VERIFY F,ALL, 8192 AN
[1 *REWIND M1 AN
[1*REWIND U1 AN
[1<copy F, ALL, ,8192 \ ||
[1xOPLBS M1 AN i
[ruTiLITY copy \ |
[1ASSIGN x4 = MO AN
[1assiGN uI=Mo0 AN —
1JOB . s
|

Figure 35. Copy and Verify Magnetic Tape to Magnetic Tape

The first two 1ASSIGN cards assign oplbs Ul and X4 to the same magnetic tape input device (MO0).

The !*OPLBS card defines M1 as the device that receives the copy output.

The ! *COPY card specifies that all files (ALL) are to be copied until a double EOF is encountered, and the double
comma specifies that the FORM parameter is not being used since no output is to go to the line printer or keyboard/
printer. Since we will, in this example, assume that the maximum record size is not known, the maximum permis-
sable record size of 8192 bytes is specified. If any record read exceeded this maximum, a "CALLING SEQUENCE
ERROR" message would be output and Utility would abort with a UT abort code.

The *"REWIND UI (or !*REWIND X4) and *REWIND UO will rewind the MO and M1 magnetic tapes in prepara-
tion for verification.

The I*VERIFY card causes the MO and M1 magnetic tapes to be read and compared.

The two 1*UNLOAD cards cause the tapes to be rewound and placed in manual mode.

HOW TO COPY A FILE TO LINE PRINTER

An example of how to copy the listing output from either an assembly or compilation to the line-printer is given in
Figure 36. The input (UI) could be read in from a magnetic tape or compressed RAD file.

How to Copy and Verify

| tEOD AN

| 1*COPY F,, FORM \
| 1-opLBs LP \
[tuTiLITY copy AN
IASSIGN UI=MYLO,UD AN
1JOB N

Figure 36. Copy LO File to Line Printer

In this example, the TASSIGN card assigns Ul to a compressed RAD file called MYLO located in the User
Data area.

The 1*OPLBS card defines the line printer (LP) as the device to receive the copy, and the !*COPY card specifies
by default (double comma) that one file is to be copied. The FORM parameter specifies that the first byte of each
record is used for line printer or keyboard/printer format control and is not to be printed.

HOW TO PRESTORE CONTROL COMMANDS

The prestore mode separates control command functions from data when both are read in from the same input device,
and then delays execution of the control commands until an 1IEOD is encountered. It does this by prestoring all
Utility commands on a temporary RAD file (X5) up to an IEOD, and they are then executed in sequence to process
the input data.

When the Copy routine is being used, the Utility Executive will automatically prestore commands when SI and one
or more other oplbs are assigned to the same input device! but you can "force" prestore through the use of a Utility
I *PRESTORE card.

In the example shown in Figure 37, a card deck is verified against a paper tape, with the data deck and control
commands being read in from the same device. We will use the UO operational label as an input source to com-
pare against X4.

The first two IASSIGN cards assign SI (for PRESTORE input) and UO (for VERIFY output) to the card reader (CR de-
vice operational label), and the third !1ASSIGN card assigns the X4 device to paper tape.

The I'*PRESTORE command (which must always follow the IUTILITY card) causes all Utility control commands to be
loaded into the X5 RAD file and delays their execution until the !EOD card following the !VERIFY card is read.

"Prestore takes place under different conditions in the Object Module Editor. See the OMEDIT subsection in
Chapter 9 of the RBM Reference Manual.

How to Copy and Verify

63

64

Deck for comparison
{ lEOD

[1*VERIFY F
1*PAUSE LOAD PT

r!*OPLBS uo
——| 1*PRESTORE AN
| ruriuTy copy \
[1ASSIGN X4=PT AN
{ 1ASSIGN UO=CR \
————| IASSIGN SI=CR \
1JOB \

Figure 37. Verify Card Deck and Paper Tape with Forced Prestore

The !*OPLBS card defines UO as the output (in this case input) device, which is the card reader since UO was pre-
viously assigned to CR.

The !*VERIFY card causes card deck to be read from UO and compared with the data written on paper tape
(X4).

HOW TO USE UTILITY DUMP

The Dump routine will dump (print) records or files from one media onto any device you specify. You can also
specify whether the dump is to be in EBCDIC or hexadecimal format. Dump is called by a TUTILITY DUMP command.
If an operational label is specified with this command, input is from the device assigned to that label; otherwise, in-
put is from the Ul device. Output is always to the LO device. The number of records may be specified by the first
parameter on a ! *DUMP command. If this parameter is blank, records will be dumped to a file mark. If the param-
eter is ALL, records will be dumped to a double EOF. Maximum record size may also be specified. Input data may
be binary or EBCDIC. If the HEX parameter is specified on the ! "DUMP command, the output is in the hexadecimal
equivalent of the input (assumed binary). If HEX is omitted, records with a binary indication in the first byte (see
the DUMP description in Chapter 9, RBM Reference Manual) are output in hexadecimal; all others are assumed
EBCDIC and are output as such.

If SI and the input device are assigned to the same device or RAD DFN, SI is prestored.

How to Use Utility Dump

HOW TO DUMP A MAGNETIC TAPE

The deck example given in Figure 38 will dump a magnetic tape assigned to operational labe! MT onto whatever
device is assigned to LO (normally a line printer).

[tFIN \
[1eoD \
| 1*DUMP ALL .
————{ IUTILITY DUMP MT AN

1JOB AN

Figure 38. Dump a Magnetic Tape

The IUTILITY DUMP card calls in the Dump routine and specifies that input is to be read from MT. If an oplb was
not specified, input would be read by default from the device to which Ul is assigned.

The 1*DUMP card specifies that all records on the tape are to be dumped until a double EOF is encountered (ALL).
Since neither the "mode" or "size" are specified, the default options of EBCDIC format for the output and the stan-
dard record size (120 bytes) will be used.

HOW TO DUMP A RAD FILE

The example given in Figure 39 will dump a user-defined sequential access RAD file called SAMP from the User
Data area of the RAD.

|iEOD

[1*DUMP ,HEX, 12000 AN

- JruTiLiTy Dump
[1ASSIGN UI=SAMP,UD AN

1JOB AN

Figure 39. Dump Sequential Access RAD File

How to Use Utility Dump 65

66

The TASSIGN card assigns Ul to file SAMP, in the User Data (UD) area of the RAD.

The IUTILITY dump card calls in the Dump routine and specifies the input device as Ul by default, which for
the length of this one job, is temporarily assigned to the SAMP file in the UD area.

The !*DUMP card causes the SAMP file to be dumped out to the LO operational label. The HEX parameter speci-
fies the dump is to be in hexadecimal format and maximum size of the record to be dumped is 12000 bytes (which
would probably be determined by looking at a RAD map). Note that since this is a sequential access file, the maxi-
mum record size specified must be an even number.

HOW TO USE THE OBJECT MODULE EDITOR

Like the other two Utility Editors, the Object Module Editor generates or maintains (updates) magentic tape, paper
tape, RAD, or disk pack files. As its name implies, OMEDIT works with binary object modules that are output from
assemblies or compilations.

OMEDIT is called by a IUTILITY OMEDIT command and itself has no specification parameters. OMEDIT oper-
ates in two modes: list and modify, and either a 1*LIST or | *MODIFY card must follow the IUTILITY OMEDIT

card.

In the list mode, object modules are input from the UI device, checksum and sequencing are checked, and the
"ident" (the result of an IDNT directive in Extended Symbol or a subroutine name in FORTRAN) is printed on the
LO device. Checksum and sequence errors are flagged on LO, and listing continues.

In the modify mode, two alternatives are available: GEN and INSERT. If the GEN parameter is used, it must be
followed by a ! *INSERT command. OMEDIT then copies binary records from Bl to UO, performing checksum and
sequence checks.

If the INSERT parameter is used, it may be followed by !*INSERT commands or by ! *DELETE commands. Binaryrec-
ords are copied from Ul to UO. A 1*DELETE card causes the named modules to be omitted from the UO records. The
I*INSERT command causes modules from the BI device to be written, in sequence, to the UO device. The first ident
on the !*INSERT command specifies the BI module to be inserted; the second ident, if present, specifies the UI mod-
uleitistofollow. If the second ident is absent, the BI module will be the next module written to UO.

Prestoring of control commands or binary data will occur under the following conditions:

Oplabels Assigned to

the Same Device Prestored
SI, Bl S1

SI,UI SI

BI, UI BI

SI, BI,UI SI, BI

OMEDIT will not terminate and exit until two successive |EODs are encountered from Ul or BI.

HOW TO LIST OBJECT MODULES FROM GO FILE

The example in Figure 40 will read the object module(s) located on the default GO file (RBMGO) from the System
Data area of the RAD, and list the contents until a double !EOD is encountered.

How to Use the Object Module Editor

[tEoD AN

| 1EOD (or I*END) \

[1+LIST \
[rutiLTY omepiT AN
— [1ASSIGN UIRBMGO,SD AN

1JOB \

Figure 40. List Object Module from RAD File

The IASSIGN card assigns Ul to the RBMGO file, and the !*LIST card will cause the contents to be listed on
the LO device (normally the line printer).

HOW TO UPDATE OBJECT MODULES FROM CARDS

The example in Figure 41 will read in a set of update modules (BI) that modify the original binary object modules
(UT). The updates, original modules, and control commands are all read in from the same device. The updated
version of the program is to be written on magnetic tape. Since BI (updates) and Ul (old modules) are assigned to
the same device (SI), the complete BI file will be automatically prestored on a temporary RAD file before the up-
date takes place. All inserts and !*INSERT commands must be in the proper sequence.

[T*INSERT CHANGE, INP \
[!*DELETE OuTP
[I*INSERT STEP,CALC
——| I*MODIFY INSERT \\
[1uTILITY OMEDIT N\
[1ASSIGN UI=BI \
[!ASSIGN UO=MT \
1JOB \ —
1

Figure 41. Update Object Modules from Card Reader to Magnetic Tape

How to Use the Object Module Editor

67

68

(New) MOD Object Module
Bl Update SR :
Modules [CHANGE Object Module
~————| STEP Object Module ||
|'EOD \
——| | *DELETE MOD \
——[T*INSERT MOD \

UI Object
Modules To
Be Updated

[1IEOD (or 1*END) AN

| 1e0OD AN

(Old) MOD Object Module (replaced)

OUTP Object Module

UI Object
Modules To ————=[CALC BI Object Module

Be Updated 1EOD \

Figure 41. Update Object Modules from Card Reader to Magnetic Tape (cont.)

The deck structure in Figure 41 will perform the following functions:

1.

2.

Insert module STEP after module CALC.

Delete module OQUTP.

Insert module CHANGE after module INP.

Insert "new" module MOD after module CHANGE.
Delete "old" module MOD.

Write updated version on magnetic tape assigned to UO.

How to Use the Object Module Editor

The card images of the resulting updated version of the program written on magnetic tape would appear as shown
in Figure 42, as compared to the Ul version shown in Figure 41.

(New) MOD Object Module

CHANGE Object Module

INP Object Module

STEP Object Module

CALC Object Module

Figure 42. OMEDIT Update Example

HOW TO USE THE RECORD EDITOR

The Record Editor edits FORTRAN or assembly language source input by record number in the following manner:
e Generates source data files.
e Lists source data files with associated tine numbers.

o Modifies source data files.

A 1*LIST command places RECEDIT in the list mode. Source files are read from UI and listed on LO, with asso-
ciated line numbers starting with "1". An 'EOD or file mark will cause line numbering to restart with 1. An op-
tional "number" parameter on the !*LIST command indicates the number of files to be read; if "number" is omitted,
one file will be read. If double EODs are encountered, the list mode is terminated.

The *MODIFY command initiates the modify mode (and will terminate the list mode). The GEN parameter on this
command causes source images to be copied from SIto UO. If the LIST parameter is also present, UO and the asso-
ciated line numbers will be listed on the LO device.

If the GEN parameter is absent, updating is implied. If LIST is present, the LO listing will contain the UI line
numbers. In the update mode, Ul is read, modified by control commands and source images from SI, and written
to UO. Lines specified by number on a !*DELETE command are omitted from UO.

Source images following (on SI) an !'*INSERT command are written on UO following the UI' line number that
is specified on the !*INSERT command. A source image following a *CHANGE command replaces the Ul
source image whose number is specified on the !*CHANGE command. If more than one source image follows
the !CHANGE card, those following the "changed" one are inserted before the next Ul image is copied. Two
numbers on the !*CHANGE command causes deletion of all Ul images inclusively between the numbers. Source

How to Use the Record Editor

69

70

images on SI following either ! *INSERT or ! *CHANGE commands are inserted on UO until the next control
command is encountered. When a EOD is encountered from SI, the remainder of the Ul file is copied to UO.

If ST and Ul are assigned to the same device, SIis prestored.

It is worth mentioning that assembly language users have some record editing functions available to them through
the assembler. See the specification options on the !IXSYMBOL control command in the Extended Symbol/LN,
OPS Reference Manual, 90 10 52, for record updating capability.

HOW TO LIST A SPECIFIED FILE FROM MAGNETIC TAPE

The example given in Figure 43 would list the sixth file from a magnetic tape.

I!EOD \

{ *REWIND UI AN

[1+L1sT \
| 'UTILITY RECEDIT AN
| vFsKip U5 AN

| 1ASSIGN UT=MT
1JOB \

Figure 43. List Specific File for Magnetic Tape

The TASSIGN card assigns UI to the MT operational label for a magnetic tape, and the 1FSKIP card causes Ul to
be skipped past the first five EOF marks.

The !*LIST card then causes all records in file six or the Ul tape to be listed until the next EOF is encountered
and Ul is then rewound.

HOW TO MODIFY A SOURCE MODULE TO A RAD FILE
The example in Figure 44 will read source record updates, the original source deck, and all control cards from the

card reader. The updated source module will then be written in a compressed, blocked RAD file called MYSORS
(user-defined) in the User Data area. Prestore will be imposed since SI=UI.

The !*MODIFY card specifies that both the records deleted and the records inserted will be listed on LO, including
UI line numbers deleted and the line number preceding the one inserted. Since updating is to be performed, the
GEN parameter must not be present on the card.

The ! *DELETE card specifies that lines31 and 32are to be deleted from the source records, and the ! *INSERT card
specifies that source records are to be inserted after line 49. In our example, four new records are inserted.

How to Use the Record Editor

{1eOD \

[Original Source Module

| 1EOD
—»l New Source Record 2 \
I New Source Record 1 \
| New Line 54
—| I*CHANGE 54

[Source Record 4 \

[Source record 1| \

| 1*INSERT 49 \\

[1*DELETE 31,32 AN

-~ [*MODIFY LIST

[IUTILITY RECEDIT \\
[ASSIGN UO=MYSORS,UD \

| IASSIGN UI=CR L

1JoB AN B

Figure 44. Update Source Records in Source Module

The *CHANGE card specifies that line 54 is to be replaced and that new source records may be inserted after the
new line 54. In this case, two new records are inserted.

HOW TO USE THE SEQUENCE EDITOR

SEQEDIT performs the same functions and operates similarly to RECEDIT; the principal difference being that SEQEDIT
operates on sequence numbers in the sequence field of the source image (columns 73-80 of a source card), thus pro-
viding more flexibility than RECEDIT. Again, source is read from Ul, modified by commands and source data from
SI, and the update is written to UO. SEQEDIT is not recommended for paper tape use.

SEQEDIT is called by a IWTILITY SEQEDIT command. Three optional parameters are allowed on the call:
GEN, IGN, and ALL (in that order). The GEN parameter specifies that the source is copied from SIto UO.

How to Use the Sequence Editor 71

72

The absence of GEN implies UPDATE mode. The IGN parameter indicates that sequence errors are ignored
on SI if in GEN mode, or UI if in UPDATE mode. The presence of the ALL parameter causes SEQEDIT to con-
tinue until double EODs are encountered.

A special command ! *IDENT is available to break the sequence field into an "ident" and a numerical section.
This facilitates updating of multiple files or multi-program files.

Insertions and replacements are accomplished by the source images (on SI) themselves, rather than by specific com-
mands. If an image on SI has the same sequence field as an image on U1, the SI image is written to UO instead of
the image from UL. If an SI image has a sequence number between two Ul images, the SI image will be inserted, on
UO, between those two Ul images. If SIcontains a block of images with blank sequence fields that followsan image
with a sequence number, UO will contain the numbered image (be it insertion or replacement), followed by the
blank-sequence images.

Deletion of images from Ul is accomplished by a I *DELETE or a ! *SUPRESS command that contains the sequence num-
ber to be deleted. If two numbers are present, Ul images will be deleted inclusively between the numbers. The
difference in the two commands is that 1 *DELETE causes the deleted images to be listed on LO while !*SUPRESS
does not.

The *SEQUENCE command may be used to sequence a file being generated, or to resequence files being updated.
If multiple files are being updated, a new !*SEQUENCE command must be used for each file.

If UT and SI are assigned to the same device, SI is prestored.
HOW TO GENERATE AND SEQUENCE A FILE ON MAGNETIC TAPE
The job example in Figure 45 will generate and sequence a new file on magnetic tape.

The IUTILITY SEQEDIT card specifies that a single file is to be generated on UO, and the presence of the GENpa~
rameter also informs the Sequence Editor that no updates are to take place. (Updating and generation cannot take
place within the same call to the Sequence Editor.) IGNindicates that SIsequence errors are to be ignored.

[Source Deck

~| | *SEQUENCE UT, 100 \

['UTILITY SEQEDIT,GEN,IGN AN
[1ASSIGN UO=MT AN

[1ASSIGN SI=CR AN

1JOB \

Figure 45. Generate and Sequence a File on Magnetic Tape

How to Use the Sequence Editor

The !*SEQUENCE card specifies that UT is the ident field and that the sequence numbers are to be in increments
of 100. This will permit a large number of later insertions without interfering with the original sequence numbers.
Thus, the first sequence number would appear as UTO00100, the second number as UT000200 and so on. The se-
quencing will take place as the file is being generated.

HOW TO UPDATE AND RESEQUENCE TWO FILES ON MAGNETIC TAPE

The example in Figure 46 will update and resequence two separate files on a magnetic tape and write the updated
versions on a new magnetic tape.

CP Update
I *SEQUENCE CP000010,100

CP000010

PK Update

| 1*SEQUENCE PK000010,100
[1<IDENT 2,6
[TUTILITY SEQEDIT ,, ,ALL
[1ASSIGN UO=M2
—— [1ASSIGN UI=M1

| 1ASSIGN s1=CC

1JOB \

Figure 46. Update and Resequence Two Magnetic Tape Files

The first 1ASSIGN card assigns SI to CC, which defines the device from which the updates and control commands
will be read. The next two ASSIGN cards assign M1 as the device from which to read the two files to be updated,
and M2 as the output device to write the updated and resequenced version.

The triple comma on the IUTILITY SEQEDIT card specifies that the GEN, IGN options are not being exercised, and
the ALL option specifies that updating is to continue until two EOFs are encountered on the Ul device (M1).

How to Use the Sequence Editor

73

74

The !*IDENT card, used only when updating files, specifies that the number of characters in the ident portion of
the sequence field is two characters, and the 6 specifies the number of characters in the sequence number subset of
the sequence field. The card holds true for both updates.

The first | *SEQUENCE specifies that resequencing will begin when a card containing PKO00010 in columns 73-80 is
found, and that resequencing will be in increments of 100, beginning with PKO00010 (if the increment number was
missing, the increment would be 10 by default). The "PK000010" parameter (in columns 73-80) specifies the se-
quence number at which the resequencing is to commence to incorporate the update.

The PK update will be added to the original file beginning at sequence number PK000010, and all line numbers
from that point will be in increments of 100 (e.g., PK000110, PK000210, etc).

The second ! *SEQUENCE card causes identical functions to be performed with the CP update.

How to Use the Sequence Editor

8. HOW TO INTERFACE ANS FORTRAN IV AND EXTENDED SYMBOL SUBROUTINES

This chapter defines the conventions and techniques required for interfacing Extended Symbol and ANS FORTRAN IV
programs and subprograms with one another and with FORTRAN Library routines. The material attempts only to
clarify those points directly related to interface problems, and more detailed coverage of the items discussed will be
found in the appropriate language reference manuals listed in "Related Publications”. It is assumed that you are
already conversant with the use of the language processors, Loaders, and characteristics of the library routines that
are available on your system.

GENERAL CONCEPTS AND CONVENTIONS

EXTERNAL REFERENCES

Separatel y assembled or compiled program sections or library routines may refer to symbolic locations within other
sections via external references. In Extended Symbol, this is accomplished with the DEF and REF directives. A
DEF "name" declares that the value of "name" is accessible to the outside world. A REF "name" implies that the
value of "name" is to be obtained from another program section and is to replace all references to "name" within
this section. In particular, if "name" is a DEF within a selected library, the REF will cause that library routine
to be loaded as part of the program. Since, during loading, the value of the "name" is its location, this means
that the location of the name will replace the references to "name".

In FORTRAN, o DEF is implied in a SUBROUTINE or FUNCTION subprogram, where "name" is the name of the
subroutine or function. A REF is created either by the explicit "CALL name (x)", or by the use of afunction name
within an expression (e.g., A =name (x)). Additionally, if "name" appears in an EXTERNAL statement, all ref-
erences to "name" will result in the creation of a REF.

TEMPORARY STACK

When operating in a priority-interrupt environment, it is essential that a routine that might be used concurrently by
different tasks (i.e., interrupt levels) is coded reentrantly. To achieve reentrancy, the called routine must not
store call -dependent data values within itself at fixed locations. The method adopted by Sigma 2/3 standard soft-
ware is for the program calling a reentrant routine to provide a certain amount of scratch storage for any storage the
reentrant routine may require. This is called a temp stack, and it is expected that the calling program will make
available the start address of its own temp stack before calling the reentrant routine. To provide for this structure,
ANS FORTRAN 1V is careful to ensure that the temp stack does not attempt to contain any preset data. (See also
Chapter 14 of this manual for a detailed explanation of temp stack and assembly language reentrancy.)

Any variables (scalar or array) that appear in a DATA statement in an ANS FORTRAN IV program or subprogram will
be allocated within the body of the program along with the code. All other variables are allocated in the temp
stack. This technique has no impact on nonreal -time programs. However, it does allow the real -time programmer
to have "named constants" within his program. An example of an occasion where the named constant concept is val -
uable is where the routine is to be parameterized. If this "constant" variable is used in lieu of an actual constant,
it is possible to easily alter the control.

Real -time programmers may elect to use variables that have been preset as other than "named constants". Any such
usage must be done with extreme caution.

FLOATING ACCUMULATOR

The Floating Accumulator is simply a name for the first six cells in a calling program's temp stack. Since various
routines employ temp storage for different purposes, this convention should not be thought of as an actual area used
only for floating-point calculations. Within a sequence of floating operations, however, it is treated much like
the A-register in Sigma 2/3 class 1 instructions.

How to Interface ANS FORTRAN IV and Extended Symbol Subroutines

75

76

COMPLEX ACCUMULATOR

In order to handle the computation of complex arithmetic functions, ANS FORTRAN IV has introduced the Complex
Accumulator. The Complex Accumulator is the name for the n + 4 to n + 15 cells of the portion of the temp stack
that is reserved by a FORTRAN Main program. The location of this area is held in the n + 3 cell of the Main pro-

gram, and is passed to each FORTRAN program that is called.

BLANK COMMON STORAGE
The Overlay Loader provides for both program-relocatable and blank COMMON -relocatable load items. Note that
the Loader will not actually place data into blank COMMON storage, but will resolve address references relative

to a specified COMMON base. It is often desired to share COMMON storage between FORTRAN and Extended
Symbol. Its use should be made clear by the example below, which defines identical COMMON areas:

FORTRAN
COMMON DAT1(10,20),TEMP(20),ICNT,ITEMP(5),MOD

Extended Symbol

(Assume above compilation uses the standard XDS allocation)

INTSIZE EQU 1 INTEGER WORD SIZE
REALSIZE EQU 2 REAL WORD SIZE

*

DATI COMMON REALSIZE*(10*20) 400 LOCATIONS
TEMP COMMON REALSIZE*(20) 40

ICNT COMMON INTSIZE]

ITEMP COMMON INTSIZE*(5) 5

MOD COMMON INTSIZE 1

Blank COMMON is discussed in detail in the chapter "How to Build An Overlay Program" earlier in this manual.

NAMED COMMON STORAGE

ANS FORTRAN 1V has introduced an additional form of named COMMON that is available for use by both the
FORTRAN and Extended Symbol programmers. An Extended Symbol program may reference named COMMON
that is defined in a FORTRAN program. In general, the Extended Symbol access to a named COMMON is roughly

equivalent to the technique that would be used to access locations within an Extended Symbol routine that has
only its first location DEF'd. The example below shows the general form of the technique to be used:

FORTRAN

COMMON/ALPHA /DAT9, TEMPA (20), TEMPB(300), TEMPC(2)

Extended Symbol

REALSIZE EQU 2 REAL WORD SIZE
DAT9 EQU 0
TEMPA EQU DAT9+REALSIZE

General Concepts and Conventions

TEMPB EQU TEMPA+(20*REALSIZE)

TEMPC EQU TEMPB+(300*REALSIZE)
LDX = ALPHA

LDA DATO, 1

LDX = ALPHA

LDA TEMPA, 1 TEMPA(1)
LDX ~ ALPHA

LDA TEMPA+Q*REALSIZE), | TEMPA(10)
LDX = ALPHA

LDA ~ TEMPC

RADD AX

LDA 0,1 TEMPC (1)

CODING EXTENDED SYMBOL ROUTINES FOR CALLS FROM FORTRAN

Both SUBROUTINE and FUNCTION subprograms may be coded in assembly language for subsequent call by a
FORTRAN program. The namefs) identifying the entry point(s) to the routine is (are) declared in a DEF
directive.

STANDARD CALLING SEQUENCE

FORTRAN generates the following code when a SUBROUTINE call or FUNCTION reference occurs:

REF name

RCPYI P,L

B name

DATA X'n' argument keyword

/.A\DRL arg one entry for each

: . actual argument in the call
ADRL arg,

The “argument keyword" specifies the addressing mode of each argument address. It consists of 1-8 two-bit codes
such that bits 0-1 refer to argy, 2-3 to arg,y, etc. More than eight arguments in a call will have an argument key-
word preceding each group of eight argument addresses. The two-bit codes have the following meaning:

00 - no more arguments (refers to argument k+1, which is nonexistant).

01 - absolute address (the ADRL contains the actual address of the argument).

10 - indirect relative address {the ADRL value, added to the present contents of the B-register, gives the ad-
dress of the argument).

Coding Extended Symbol Routines for Calls from FORTRAN 77

78

11 - relative address (the ADRL value, added to the present contents of the B-register, gives the actual
address of the argument).

These codes have been covered in detail here because they will be used extensively in following subsections
of this chapter,

ARGUMENT TRANSFER ROUTINES

There are several argument transfer routines available in the FORTRAN Library to relieve the Extended Symbol pro-
grammer of the necessity for deciphering these calling sequences. The most general routine, M:PUSH, will be
covered here. The other routines are, in general, subsets of M:PUSH and may be used as the application warrants.
Essentially, M:PUSH does the calculations necessary to produce an absolute address for each of the arguments in the
call, and moves these new addresses into a specified temp stack for easy accessibility in the called routines.

The calling sequence for M:PUSH is

RCPYI P,T

B *$+3

DATA n (number of words to reserve)
ADRL TEMP (address of temp stack)
ADRL M:PUSH

where n is equal to three plus the number of argument addresses (r) that will be converted and passed into the temp
stack from the calling parameters, plus the number of temporary cells needed by the routine. M:PUSH exits with
the A-register unchanged, the entry contents of the B-register in location TEMP+1, and the return address (calcu-
lated from the number of arguments and the entry contents of the L-register) in location TEMP+2. In locations
TEMP+3 to TEMP+3+n-1 will be the absolute addresses of the calling arguments. The B-register will point to loca-
tion TEMP. The E-register contains the number of arguments processed by M:PUSH upon return.

It should be noted that the alternate entry point M:PUSHC must be used if the Extended Symbol routine is to call
(directly or indirectly) another FORTRAN routine. The M:PUSHC entry operates the same as the M:PUSH entry
with the exception that n must be equal to four plus the number of argument addresses. TEMP+1 and TEMP+2 have
the same contents as for M:PUSH. TEMP+3 contains the address of the complex accumulator (obtained from the
calling routine). Locations TEMP+4 to TEMP+4-+n-1 will contain the absolute addresses of the calling arguments.

SUBPROGRAM EXIT

The call to M:PUSH or M:PUSHC is normally placed as early in the subprogram as possible. Care must be taken
to preserve the entry value of the L-register upon calling M:PUSH. Exit from a subprogram that used M:PUSH or
M:PUSHC is effected simply by

B M:POP RETURN TO CALLING PROGRAM

TEMP STACK DEFINITION

The recommended method for terminating the source code of a subprogram is

LPOOL DROP ANY LITERALS
RES n SET UP TEMP STACK
END NO TRANSFER ADDRESS

Coding Extended Symbol Routines for Calls from FORTRAN

Note that "TEMP" and "n" are the same as in the call to M:PUSH. The LPOOL is included as a safety measure
because no data can follow the temp stack if the program is to be converted to use dynamic storage. If this routine
is placed in the Public Library by the Overlay Loader, the call to M:PUSH will automatically be changed to indi-
cate dynamic temp allocation, and the trailing temp stack will be removed from the subprogram.

ARGUMENT CHECKING

M:PUSH ensures that the calling argument list is at least no larger than the n-3 locations allocated for it by the call
to M:PUSH. More arguments cause a PU abort code. However, the subprogram may well be interested in whether
there are less than the specified number of arguments in the call. Note that the L-register, upon entry to the sub-

program, contains the address of the first argument keyword. Thus, to check for a minimum of three arguments, we

might code

RCPY L,X

LDA 0,1 GET KEYWORD
AND =X'0C00" CHECK THIRD KEY
BAZ ERROR ERROR IF ABSENT

A FUNCTION subprogram makes use of the same techniques, the only difference being that a meaningful result must
be left in the A-register and/or the Floating Accumulator uponexit. Conventions associated with such math routines
are covered in the next subsection.

CALLING MATH LIBRARY ROUTINES FROM EXTENDED SYMBOL

Often a FUNCTION or SUBROUTINE subprogram coded in Extended Symbol will need to make use of the floating-
point and 1/O routines in the Math Library. These routines may be grouped in three main classes with regard to the
calling and usage conventions: Math routines, Arithmetic routines, and /O routines.

The address modes that are used in the reference of parameters may be classified as follows:
TYPE 1 01 Key: direct (or absolute) address.

Type 1 data refers to constants that are incorporated directly in a program. They should never be
altered by the program, and are referenced as Type 1 only by the program in which they are assem-
bled. COMMON variables may not be assembled into the program but are addressed as Type 1
data.

TYPE 2 10 Key: indirect, base-relative address.

Type 2 address references are those made to subprogram dummy variables. In this case, M:PUSH has
moved the addresses of the calling program's data into the subprogram's temp stack.

TYPE 3 11 Key: base-relative address.

Type 3 data refers to non-blank-COMMON variables used within a given program. Variables should
never be given initial values at assembly time, but instead should be initialized at execution time by
moving Type 1 data into the subprogram's temp stack. (Blank COMMON variables must be initial-
ized at execution time.)

The above conventions ensure the reentrancy of any subprogram that may be used in a real-time environment.
Note that the DATA statement in FORTRAN sets up Type 1 data, but allows this data to be modified at execution
time. A FORTRAN subprogram should thus avoid ever modifying an item declared in a DATA statement if it is to
be used in a reentrant mode. FORTRAN reentrancy is further discussed in Chapter 17.

Calling Math Library Routines from Extended Symbol

79

MATH ROUTINES

The calling sequence for a Math routine is the sume as that used for standard function references. All registers, with

the exception of the B-register, should be assumed to be volatile. The result will be returned in the Floating
Accumulator.

ARITHMETIC ROUTINES

Although Math routines may be called with several arguments and thus use the keyword for address resolution, an
Arithmetic routine expects at most one argument, and the address resolution is specified by selecting the appro=

priate entry point to the routine. The second argument of an Arithmetic routine is expected to be in the Float-
ing Accumulator.

The call to an Arithmetic routine is of the form

RCPYI P,L
B p:IDn
DATA argument
RETURN
where
p is L for standard precision.
X for extended precision.
:ID is the base name of the routine.

n is 1, 2, 3, or 4, and corresponds to the address type of the argument.

Each Arithmetic routine except p:33CPn (real compare) increments the L-register one location past the return ad-
dress before returning. This allows consecutive calls on Arithmetic routines with only an initial RCPYI P,L.

80 Calling Math Library Routines from Extended Symbol

9. HOW TO USE STANDARD PROCEDURE (S2] FILES

A Standard Procedure (52) file is an easy~to-use mechanism for allowing common symbols and often-used procedures
to be stored in a special format so that they can be used automatically during an assembly, without being duplicated
in each source program that uses them,

A basic set of procedures that define the Sigma 2/3 machine instructions are supplied with the Extended Symbol as-
sembler, This set of procedures should be considered a minimal base upon which to build other installation-specific,
or user and program-specific 52 files. There is no limit to the number of 52 files you may have on a system. How-
ever, RBMS2 is the only default S2 file and therefore does not need an !ASSIGN card. (!ASSIGN cards are re-
quired for all other S2 files.)

WHAT MAY BE STORED IN AN S2 FILE

There are two logical portions of an S2 file: the assembler's global symbol table, and the skeleton ("sample") pro-
cedure definitions. These form the initial symbol and sample table areas within the assembler. Additional symbols
and procedure definitions are added as they are defined in the source program.

Any procedure definition may be stored in an 52 file. It may contain LOCAL directives, calls on other procedures
defined in the same S2 file, or even calls on procedures that will be defined later in the source program that uses
this S2 file. In general, anything that may legally occur within @ CNAME, PROC, ..., PEND group will be
correctly stored on an S2 file.

Some care must be taken in storing Main program global symbols (and their values) on an S2 file, but the resulting
convenience is often as great as that of common procedure definitions. Likely candidates for standard $2-defined
symbols are register designators and Zero Table constant identifiers, Such constants should be defined as absolute
values via the EQU directive. In following the two rules itemized below, such symbols should not be placed within
procedures in order to save core storage. A global definition such as, A EQU 7, will require six cells of storage if
its definition is invoked by a procedure name, but will require only two cells if left at the Main program level when
creating the S2 file.

e Symbol values (at Main program level) stored on an S2 file should not be redefined by the source, nor
should any attempt be made to store Main program-level LOCAL symbols on an S2 file.

o No symbols stored on an S2 file should be used as arguments in a DEF, REF, or SREF directive (unless
within a procedure definition),

The action of the assembler is unpredictable if the above rules are violated.

In summary, any legal procedure definition may be stored on an S2 file as may any unredefinable, nonexternal,
global symbol value. A code-generating program should not be used to create an S2 file if the code generation
occurs during creation of the file.

HOW TO CREATE AN S2 FILE

It is not possible to read in an existing 52 file, add to it, and create a new S2 file. For this reason it may be de-
sirable to at least keep a source copy of the Sigma 2/3 instruction procedure set on bulk storage (RAD or disk pack).
If a listing of this file is obtained at SYSLOAD time, it may be posted (or distributed) so as to serve as a base for
special 52 files. The example in Figure 47 illustrates one method of preserving the source during SYSLOAD.

How to Use Standard Procedure (52) Files 81

[1EoD N

[Source deck
[« siomaA 2/3 INSTR. PROCS. AN
[1xsymBoL pp, LO AN
———[1ASSIGN X1=RBMS251, UD \\ |
[1eoD \\
[ADD UD, RBMS2S], , 4, C, R \
[IRADEDIT AN
1JOBC ASSUME 'sY' \{

Figure 47. Save Instruction Procedures During SYSLOAD

This example creates the standard (default) RBMS2 file and saves the source in a file called RBMS2SI in the User
Data area. (X1 is a copy of the source and is normally used only for the assembly listing).

Assuming that the above procedure was used, the example in Figure 48 shows how a new S2 file is created using
RBMS2 as a base, (Also assume that the listing from the example in Figure 47 showed the last line before the END
line to be line number 90.)

[1ASSIGN 52=MY$PROCS, UD \
[IASSIGN SI=RBMS2SI, UD \
[i#eND \
—=i¥ADD UD, MY$PROCS, 40, 108, B, R AN
[lrADEDIT AN
[1PAUSE KEY-IN SY,S AN
1JOB AN

Figure 48, Create An S2 File

How to Create An S2 File

ISource deck
[- SOURCE FOR MY$PROCS AN

—[+90 \

IXSYMBOL UI, PP, LO \

Figure 48. Create An S2 File (cont.)

The example in Figure 48 causes the source from RBMS2SI to be read, the source for the new procedures to be
inserted immediately before the original END line, and the resulting set of procedures written to the MY$PROCS
file in the User Data area. Note that MY$PROCS has been created using a blocked file with a record size of
108 bytes, which is the required format for S2 files. Subsequent assemblies using this new file might be done as
shown in Figure 49.

= ~

IMcun Program

[MAIN PRGM USING 'MYPROCS' FILE N\,

[1XsymBOL LO, CR \ \
[IASSIGN 52=MY$PROCS, UD AN

1JOB AN

Figure 49, Assemblies Using S2 File

The TASSIGN card in Figure 49 prevents the automatic assignment of S2 to the default RBMS2 file,

How to Create An S2 File 83

84

The following update packet illustrates fegal usage in creating an expanded S2 file:

+90

*

K:X8000

K:X4000

K:M15

K:M16

*

BAL

XR

+END

The above packet defines Z - A as standard symbols denoting operational registers, various symbols for standard
zero-table constants, and a set of user-defined procedures such as BAL, A SUBRNAME, which loads a return address
into the A-register and branches to "SUBNAME"; or XR T, A, which exchanges the contents of the T and A-registers

OPERATIONAL REGISTER EQUATES

EQU

EQU

EQU

EQU

0 ZERO

1 PROGRAM

6 EXTENSION

7 ACCUMULATOR

: MONITOR CONSTANTS

EQU X'09" X'8000"
EQU X'0A! X'4000"

EQU X'33" X'FFF1"

EQU X'34° X'FFFO"

. PROCEDURES

CNAME BRANCH AND LINK (TO SUBROUTINE)
PROC

RCPYI P, CFR(2)

B AFR(1), AF(2), AF(3)

PEND

CNAME EXCHANGE REGISTER

PROC

REOR AFR(1), AFR(2)

REOR AF(2), AF(1)

REOR AF(1), AF(2)

PEND

without altering the condition codes,

How to Create An S2 File

10. HOW TO REDUCE ASSEMBLY LANGUAGE HARDWARE REQUIREMENTS

The standard RBM processors make certain assumptions about resource allocation, and they operate most efficiently
when these assumptions are met. A well-planned installation will provide these resources in the majority of in-
stances, but exceptional problems can sometimes be accommodated within the existing resources via special
techniques.

The common resource constraints are either fast core storage, or bulk (RAD or disk pack) storage. In the case of
Extended Symbo!, these two constraints are related, since this assembler uses several biocked files on bulk storage
that require blocking buffers in fast core for each blocked file, Assuming that Extended Symbol is loaded with the
standard blocking buffer parameters, an IXSYMBOL call will cause m*n words of fast core to be reserved for 1/O
buffers, where

m = blocking buffer size = 180 for a 720X RAD-only system.

= 512 for a disk~pack-only, or a mixed RAD/disk pack system.
n = the number of the following operational labels that are currently assigned to blocked files:
SI, U1, SO, LO, GO, BO, X1, X3, S2, DO

Unless reASSIGNed, the GO, X1, X3, and S2 files are assigned to blocked files by default. In addition, the X2
file requires a buffer that must be the size of a sector of the device to which the X2 operational label is assigned.
On a disk-pack-only system, this would immediately remove over 2500 words from Extended Symbol's working stor-
age (enough for assembly of approximately 2000 additional lines of program). Unless noted otherwise, the techniques
given below apply to minimizing core storage requirements. Some consideration is also given to situations where
such file elimination might be inadvisable.

COPING WITH EXISTING RESOURCES

Without modification of a program, the only improvement in resource demands during an assembly will be achieved
by cutting down on the number of RAD/disk pack files and their associated blocking buffers.

GO FILE ELIMINATION

The GO file has a default blocking buffer, and is probably the safest to eliminate. If you have a suitable binary
file output device such as magnetic tape, high-speed paper tape, or card punch, it may be feasible to bypass binary
output to RAD or disk pack. The command

IASSIGN GO=0

saves a blocking buffer whether binary output is requested or not. If binary output is required, the following cards
are recommended for saving RAD and buffer space:

[1xsymBoL BO, ... AN
[1ASSIGN BO=device \
IASSIGN GO=0 AN

How to Reduce Assembly Language Hardware Requirements 85

86

X1 FILE ELIMINATION

The X1 file has a default blocking buffer and is used by Extended Symbol to maintain @ copy of the source (with
possible updates) for listing purposes. If you are not using the update feature of Extended Symbol, it may be pos-
sible to eliminate the X1 file. If you have magnetic tape and the one or more source programs are separated by
file marks on the tape, the following commands will eliminate X1 and its buffer:

[1xsymBoL . ..[,BA] \

[1ASSIGN X1=51 AN
IASSIGN Sl=tape unit N\
|—
-

In the case where your source program is already on a RAD/disk pack file, it is still possible to assemble this one
program and eliminate X1. This may be done as follows:

[IXSYMBOL options \
[IASSIGN X1=51 \

IASSIGN SI=file name, area AN

X3 FILE ELIMINATION

The X3 file has a default blocking buffer, but this file is only used if the source program uses LOCAL directives at
the main-program (i.e., not within a PROCedure) level. If it is known that a program does not use main-level
LOCAL symbols, the IXSYMBOL command should be preceded by

TASSIGN X3=0

It is not necessarily a good practice to avoid main-level LOCALs however, since their use can generally reduce
resource requirements more than their avoidance (see, "Coding for Existing Resources" in this chapter),

$2 FILE ELIMINATION
The final file with o default blocking buffer is $2. The S2 file should be left assigned to RAD/disk pack if at all

possible, While the procedure for running S2 from paper-tape, cards, etc. is easy fo perform, the method is
highly dependent upon the particular hardware configuration.

Coping With Existing Resources

REDUNDANT FILE ASSIGNMENTS

In general, unnecessary or redundant assignment of assembler files to RAD or disk pack should be avoided. This
precept includes assigning unused default files to device zero. A redundant assignment would include something
like assigning BO=GO, or DO=LO, where GO and LO were assigned to RAD/disk pack files.

CODING FOR EXISTING RESOURCES

There is an upper limit to the size of a program that may be assembled in a given system configuration. In Extended
Symbol, the limit generally depends upon core size balanced against the number of unique symbols in a program,

The most obvious technique for reducing core requirements during an Extended Symbol assembly is to reduce the
number of unique symbols in the program. This can be accomplished by using several LOCAL regions in the program
and using the same LOCAL symbols for each region, as shown in the following example:

i_OCAL $10, $20, $30
AROUTINE RES 0
$10 E?ES 0
$20 E(ES 0
$30 !:{ES 0
:LOCAL $10, $20
BROUTINE RES 0
$10 I}ES 0
$20 E'{ES 0
END

The above technique is practical in most programs since programs are often divided into many separate routines; the
routine name being global to the whole program, but many symbols within the routine are referenced only by that
routine,

Note that main-level LOCAL symbols do require RAD or disk space during an assembly. The requirements are three
words per symbol per LOCAL region. The above example would thus require 15 words of bulk storage. Since a
blocking buffer is required for the LOCAL (X3) file, this technique must be used consistently over moderate~to-
large programs before the savings in core storage becomes effective.

Coding for Existing Resources

87

88

11. HOW TO USE HARDWARE INTERRUPTS

This chapter forms a natural division in the organization of the User's Guide. All previous topics have dealt either
with purely background applications or with those services and procedures used in common by both foreground and
background. The descriptions and suggestions for using the hardware interrupt system given below mark the entry
into the real-time world of RBM, and it is recommended that some attention be given to this material before going
on to succeeding chapters. By studying the capabilities and implications of the hardware interrupt system, you will
be better able to call on these resources in a way best suited to your own foreground programming requirements.

In particular, all foreground users should at least be cognizant of the internal interrupt structure and purposes of
the RBM Tasks that comprise the Monitor, since RBM is itself a real-time program that must respond to time=-critical
events such as I/O interrupts and operator interrupts. The interrupt levels of the RBM Tasks and their interrelation-
ship with user tasks and programs are described briefly at the end of this chapter as an example of one way to use
hardware interrupts. (A description of the Tasks' functions is given in the Real-Time Programming chapter of the
RBM Reference Manual.)

Note that some foreground programs can utilize interrupt levels without being real-time programs, and one sugges-
tion for such use is given later in this chapter.

PURPOSE OF HARDWARE INTERRUPTS

The Sigma hardware architecture includes a powerful hardware priority interrupt system. This consists of a multi-
level interrupt structure composed of both external and internal levels arranged in an expandable, flexible, and
partially pre-selected order. RBM has been specifically designed to use this hardware priority interrupt structure

to the fullest extent possible, and this particular structure's purpose is to efficiently allocate the CPU. The impli-
cations of this structure are described in detail to suggest ways that you can use Sigma interrupts. For if you do not
take advantage of these features when designing a real-time system, the full power of the hardware approach is lost.
To get the maximum utilization out of a Sigma 2/3, your real-time system design should be based on a clear under-
standing of the power and flexibility of the hardware interrupt system.

The detailed implications of Sigma interrupts are as follows:

e Fast real-time response: On the occurrence of some predetermined external or internal event, the
Sigma 2/3 can stop its current operation and switch to an entirely different operation within a few instruc-
tions. This permits real-time programs to operate in a time-critical manner.

e Priority response: Since each hardware level has an implied priority (by its position in the interrupt chain)
and since a level only interrupts the CPU if it is the highest active level, the CPU is guaranteed to al-
ways be working on the most important (highest priority) operation that needs attention in the system,

e Low overhead: No time is spent by the CPU in posting to software queues, periodically scanning these
queues, and checking to see if something new has arrived on the ready queue that is higher priority than
the current operation; instead this is all done automatically by the hardware priority interrupt system. In
fact, this system can be viewed as a separate "processor” that executes in parallel with the CPU, main-
taining a "queue" in the interrupt hardware and operating in a microprogrammed fashion to do the sched-
uling for the Sigma 2/3 CFU. Thus, the Sigma 2/3 CPU can be involved with solving user problems
instead of trying to decide what to do next.

e Noninterference: When events of a lower priority than the currently executing program become ready, this
fact is noted by the hardware interrupt system but the CPU is not diverted away from its currently more
important operation (even for a microsecond) to record the fact and make a decision relative to the priority
of these two tasks; this decision is accomplished automatically in the interrupt hardware.

® Asynchronous operation: The hardware interrupt system is truly asynchronous; that is, it executes a task at
a specific interrupt level only when that level goes active as the result of some specific event. If the times
of such an event are variable and random, this asynchronous but immediate response is highly important.
(Asynchronous operation is considered in detail later in this chapter.)

e Anonymous operation: The design of tasks need not be concerned with what other tasks may be operating
when an interrupt occurs, or what context the interrupted task was using upon entry. Each task saves (in

How T> Use Hardware Interrupts

its own area) the registers and other temporary working storage that it will modify, does its own function,
and then restores these registers independently of what the other task was. Thus, this is a strictly LIFO
(last=in, first—out) method of scheduling that minimizes debugging and design problems. Another way of
defining anonymous operation is that an interrupted task is never aware that it was interrupted, except
where timing considerations (such as real-time clock pulses) are a factor.

o Flexibility: From one to 100 interrupt levels can be used and they can be arranged in various priority
levels; some above and some below the 1/O level and other RBM levels. By selecting the number of inter-
rupts, the groups of interrupts, the priority of these interrupts, and the source of activation pulse for each
level, each installation can fit its own unique demands.

SUMMARY OF HARDWARE INTERRUPT FEATURES

A complete description of the features of the hardware interrupts can be found in the Sigma 2 or 3 Computer Refer-
ence Manuals, However, the key points as related to your program design can be summarized in this chapter.

The interrupt "environment” (CONNECT, ARM, ENABLE, INHIBIT) is controlled either directly through special RD
or WD instructions coded into your program, or indirectly through RBM Monitor service routines accessed by calls,
key-ins, or control commands. The hardware interrupts for Sigma 2/3 computers possesses the following
characteristics:

e No level may advance to an active state while a higher level is active,

e Under program control, individual levels (or "groups") may be set to ignore incoming signals (DISARMED)
or to postpone reaction to these signals until some later time (DISABLED or group INHIBITED).

e The initial condition of all interrupt levels (except the override group, when the options exist) is DIS-
ARMED and DISABLED.

o Interrupt levels may be TRIGGERED either by program control or by external signals.

o All levels (except the override group) may be inhibited by a single instruction; the inhibit may also be
removed by a single instruction.

e The internal and external interrupts can be inhibited either separately or at the same time.

o The previous stafe of interrupt inhibits can be saved, and new inhibit conditions set or reset in a single
instruction.

e The previous interrupt inhibit state is saved (in the old PSD) on a task eniry sequence, and the first instruc-
tion of the task is always executed before another interrupt can take place; thus, this first instruction can
inhibit all further interrupts if desired.

o No level may advance from the waiting state to the active state unless it is ENABLED and not inhibited.

o The hardware priority sequence may be arranged in virtually any priority order, either above or below the
I/O group. The override group is always high.

e Aninterrupt level should not be DISARMED while it is active because the results are unpredictable. Since
the hardware priority search during the EXIT sequence is based on certain mutually exclusive states of the
interrupt flip-flops, DISARMING causes a level to be ignored even though it is active.

o Only one-level of signal is remembered by interrupts. Thatis, if a level is already waiting to go active,

another TRIGGER will have no additional effect on it; and if a level is already active, another TRIGGER
is ignored.

Some of the implications of these characteristics are as follows:

e Real-time programs can be debugged by using software triggering for certain levels before the real-time
hardware is connected.

Summary of Hardware Interrupt Features

89

90

e Real-time programs can work in groups by using internal WD (Write Direct) instructions to TRIGGER
various levels; thus, a high priority level may be connected to external signals and collect data at the
high priority, and then TRIGGER a lower priority to process the data at its leisure.

e® Under program control you can select which interrupt levels to initially ARM and ENABLE, and can reject
or postpone future signals based on program logic or program computations.

® Real-time programs that have to inhibit interrupts anywhere (except as the first instruction on task entry)
should do so by a save-and-inhibit sequence (a special RD instruction). Later, they should never "remove"
interrupt inhibits but should always "restore" them to their previous state; either by executing an EXIT se-
quence (and using the old PSD), or by a "restore" sequence that uses the information from the save-and-
inhibit sequence. This is because some tasks may inhibit externals and not internals, or vice-versa.

e If an active task wishes to have all future signals to its own level ignored, it should DISABLE this level
and EXIT rather than DISARM it and then EXIT, Some future, lower-priority task can DISARM the
disabled level if this is really necessary. One should not DISARM an active level. One should also not
ARM an active level since this interferes with the current state.

INTERRUPT TASK SCHEDULING

The possibilities for real-time task scheduling based on these hardware interrupts are very broad, subject only to the
LIFO requirement. The several suggestions given below are meant to be general guidelines only.

A particular interrupt level can be used to uniquely identify an event that requires processing. At the same time,
it establishes the priority of this processing relative to other levels. Or, an interrupt level (such as the 1/O level)
may only identify a class of possible events, and further information may be required to identify the specific event,

When a series of tasks, each of which is connected to separate interrupt levels, all use the same database (tables
or files), the other tasks in the group can be DISABLED while any one of them is modifying critical portions of the
database, and it still permits higher priority interrupts in another group to become active if necessary. A general
inhibit instead of a DISABLE would not permit this. Also, any signals to the DISABLED tasks will be "remembered"
for later processing, which would not occur if a DISARM were used.

A task connected to a level higher than the 1/O level can be activated from some critical real-time event (such as
an over-temperature condition in a process plant), and this task is guaranteed 100 us response to any signals, as-
suming this is the highest real-time user level, since RBM never inhibits interrupts for longer than 100 us.

A user task at a high priority level may sample some data input devices periodically and then TRIGGER other, lower-
priority levels associated with some particular condition that requires further processing, and such processing can be
performed at a lower level that is commensurate with the importance of the particular condition.

RBM itself uses some interrupt levels for its own processing as identified in the RBM Reference Manual. But gen-
erally speaking, RBM does not interfere with the real-time interrupt levels and user programs are free to make their
own scheduling rules,

It is by no means necessary to limit the use of interrupt levels to real-time operations. A tape-to-printer routine
in the foreground can be connected to an interrupt level and can use the AIO Receiver and no-wait 1/O operations
to schedule and synchronize itself in order fo buffer output to a printer, and so permit other (lower priority) tasks
{including the background) to execute while 1/O is in progress for this task.

SOFTWARE SCHEDULING OF SUBTASKS

We stated earlier by implication that attempts to schedule CPU allocation through user software, rather than taking
full advantage of the hardware features, would result in degradation of the system. This is true at the primary task
level but software scheduling within a task can be useful. While the primary (task) scheduling in RBM is strictly
off the hardware priority interrupt system, it is possible for a task at a particular hardware interrupt level to organ-
ize itself into a series of subtasks.

Suppose that in your installation a very large number of distinct real-time events are possible. And suppose that
many of them are processed in little groups, each related in some way to an external event. It is not necessary to

Interrupt Task Scheduling/Software Scheduling of Subtasks

have a separate task with a separate interrupt level for each of them. There is a concept of secondary scheduling
that can be controlled by user software, at your discretion, through any of a number of schemes.

When the primary task is activated by its hardware interrupt, it might identify a subtask (or subfunction or subevent)
to be performed by means of status information read in from the external equipment. Communications equipment and
analog or digital converters very often operate this way. Or, o fixed number of subtasks under the primary task
might be processed sequentially if their execution sequence is always fixed and always known, Or again, the pri-
ority of each subtask might correspond to a bit in a software status word and the primary task might search the status
word from left to right, looking for the highest priority subtask to process. These bits might be set by the primary
task or by other subtasks, based on conditions during the processing of these subtasks.

Many other methods are also possible. A primary task could be thought of as special foreground executive, with
the job of scheduling the activity of a set of related subtasks. As a special RBM service, there are 32 dedicated
locations in low core (mail boxes) available to all real-time programs to aid in this intratask communication.

The rules for determining which events should be processed as primary tasks and which as subtasks are very simple:

1. At least a portion of all primary tasks must be resident to answer a hardware priority interrupt. Subtasks
can be resident or can be nonresident overlay segments; if overlaid, the overlays are controlled from the
primary task by calls to RBM service routines.

2. All subtasks must operate to completion (in regard to other subtasks at the same level) or until they explic-
itly release control back to their primary task executive before another subtask at this same level can be
scheduled. Thus, the types of events that can operate as subtasks are restricted in regard to other subtasks
at this level, since this is basically synchronous operation. But they are not restricted relative to other
primary tasks. Primary tasks at separate interrupt levels can interrupt each other immediately when an
event occurs that needs attention, Thus, primary tasks are basically asynchronous and are much more
responsive than subtasks.

3. Control of subtasks is centralized at their primary task and is exercised through software. Primary tasks
are controlled with decentralized hardware scheduling.

RBM ORGANIZATION

To better illustrate the idea of programs, tasks, and subtasks, the detailed structure of RBM should be examined,
since RBM is itself a real-time program with several tasks and subtasks, RBM uses up to nine of the fixed hardware
priority levels on a Sigma 2/3 and one assignable external interrupt level that is controlled by software triggering
from other tasks or from Monitor service routines. This priority interrupt structure is illustrated in Figure 50. The
RBM Control Task level is designed primarily for operator control and for control of the background, and must not
interfere with the foreground. Thus, it must always be assigned to an interrupt level below all the foreground pri-
ority levels, The resident part of this level causes the various RBM subtasks to be loaded from the RAD as needed.

The other RBM tasks perform a minimum of analysis at their level, set status bits in the RBM Control Task control
word, trigger the RBM Conftrol Task level, and then exit. For example, when the operator activates the Control
Panel interrupt, which is just below the 1/O interrupt and above most of the real-time tasks, this RBM Control Panel
Task sets a bit in the RBM Control Task status word to signify that the operator key-in subtask is needed, and then
triggers the RBM Control Task. Thus, operator key-ins do not interfere with foreground operation, since these key~
ins are designed to control batch background processing. Similarly, if the background tries to execute a privileged
instruction or tries to branch to protected core, the Memory Protect task is activated; this task sets the Abort subtask
flag, triggers the RBM Control Task, and then exits, From the address in the program status doubleword, the RBM
Abort subtask can tell the exact location causing the protection violation. This information is printed in the abort
message to aid in debugging background programs. The printing of messages and the deactivation of the background
does not interfere with foreground operation. Thus, the entire set of RBM tasks works as an asynchronous whole to
control the operation of the system,

Discussion on the RBM handling of input/output to achieve multi-task operation is in order at this point. Remember
this fundamental rule:

e All input/output is initiated and checked for completion at the priority level of the requesting task.
Further, all input/output uses interrupt control to coordinate 1/O activity.

RBM Organization

N

92

Highest

Priority N Power On Task (RBM)
Level ~+ Power OFf Task (RBM)
a4 Memory Parity Task (RBM)
i Protection Task (RBM)
{ Multiply Exception Task (RBM)
4 Divide Exception Task (RBM)
4_ Real-Time Foreground Tasks (if any)
4 Input/Qutput Interrupt Task (RBM)
. Control Panel Task (RBM)
i Real-Time Clock #1 (RBM)
. Real-Time Foreground Tasks (if any)
Lowest
:I:Z;:Zre -4 RBM Control Task
Level Power On (Highest Subtask)
eve Background Checkpoint (Highest Subtask)

Background Restart

Absolute Loader

Background Abort

Background Termination

Operator Key-in #2

Operator Key-in #1

Post Mortem Dump

Idle Task

Control Card Interpreter (Lowest Subtask)
-1 Background Program (No Hardware Level Used)

Figure 50. RBM Hardware Priority Interrupt Levels

To prevent the problem of 1/O hang-up on shared devices like the RAD, the I/O Interrupt Task in RBM saves end-
action status information in a task context area called a Device File Table that is unique to each task. For example,
if the background initiates an operation on the RAD and then is interrupted by the foreground before the operation

is complete, the I/O Interrupt Task saves the device status at channel end in the specified background Device File
Table and frees this device for further use. The foreground may then use this device. Later, when control returns
to the background and when the data is needed, a check is made to determine if the operation was completed suc-
cessfully. If any retries are necessary, they are performed here. Otherwise, the operation is complete, Standard
error recovery is provided for all devices, but user programs can elect to treat errors in any manner they choose,

A very important service that is in keeping with the philosophy of asynchronous operation is the AIO Receiver. This
permits a foreground task to initiate /O with a no wait option. When the Monitor has then successfully initiated
the 1/O operation, it returns control to the foreground task; the foreground task can then set a flag for itself that
1/0 is pending and exit to a lower priority task (or to the background). Later, when this level becomes active,
processing will continue for that task, This feature can be used in the foreground to permit more efficient use of
the computer. Thus, users have a choice about releasing control during 1/O operations. This is an efficient way

to buffer or queue 1/O operations for foreground tasks. (A foreground program could have one task to do nothing
but queue and buffer for other tasks, for example.)

RBM Organization

12. HOW TO CREATE A TASK CONTROL BLOCK

A Task Control Block (TCB) is a convenient means for storing and organizing the information required to allow
various foreground fasks to operate and interrupt each other in an orderly manner. The Monitor assumes that a
TCB is the first loadable item within a foreground program. The TCB is used by the Monitor service routines
M:SAVE, M:EXIT, M:LOAD, M:OPEN, M:CLOSE, and also when a C: (connect) control command or C key~-in is
read. (See the next chapter, "How To Connect Tasks To Interrupts" for more details about TCB and C: interface.)

You have two alternatives in the creation of a Task Control Block for foreground use: code your own TCB (if pro-
gramming in Extended Symbol), or allow the Overlay Loader to create it. If you wish to code your own TCBs, refer
to Chapter 6 of the RBM/RT, BP Reference Manual, 90 10 37 for detailed information on TCB composition. The in-
formation given below deals entirely with Loader-built TCBs,

If the Loader builds the TCB, it does so completely; that is, no initialization of the TCB by the user is allowed.

A foreground root may contain one or more tasks, with each task connected to its own interrupt. This is accom-
plished through multiple Overlay Loader 1$TCB commands within the root loading sequence. The first 1$TCB com-
mand must precede the I$ROOT command and is called the "initial" TCB. The only difference between it and
subsequent 1$TCB commands is that a "temp" parameter on the initial 1$TCB command is ignored; instead, the value
of the "temp" parameter from the !$ROOT command is used.

The other two parameters on the initial 1$TCB command, w{ and wy, are placed by the Loader in the next two loca-
tions of the TCB. For simplicity, these words are usually written as hexadecimal numbers (e. g., preceded by a +),
although if desired, they could be written in decimal. Groups of bits within these two words are used as indicators
and interrupt locations. See the "Task Control Block" table in Chapter 6 of the RBM/RT, BP Reference Manual,

90 10 37 for more detailed TCB construction.

The first parameter, Wy is constructed as follows:

Bits 0-3 contain the A register bit number for a Write Direct instruction. This is a number from O through F
(hexadecimal) associated with each individual interrupt within its group. Refer to Table 1 in Chapter 2 of the
Sigma 3 Computer Reference Manual, 90 15 92, The list of numbers below the heading "Write Direct Register
Bit (3)" of this table is the A register bit number referred to above.

Bit 4 is a flag indicating whether the Monitor should set core locations 1 through 7 when M:SAVE or F:SAVE is
called. If any Monitor service routines are called within the task, bit 4 should be zero indicating that the
Monitor is to sef these core locations.,

Bit 5 is not used but should be zero. Bit 6 indicates whether the interrupt should be triggered when the task is
loaded ("1" means trigger, and "0" means not to trigger).

Bits 7-15 contain the core location (in hexadecimal) of the particular interrupt to be associated with this task.
Refer again to Table 1 in Chapter 2 of the Sigma 3 Computer Reference Manual 90 15 92, The leftmost column
in this table gives the location for each interrupt.

Assuming that wy was written as +C30C, the indicators would mean that the interrupt wired to location X'10C" (268)
is associated with this task, the Monitor is to set core locations 1-7 (the usual case), and interrupt X'10C' is to be
triggered when its task is loaded into core. Remember that the Overlay Loader does not load programs into core;
this is the function of the M:LOAD Monitor service routine.

The second parameter, Wo, is constructed as follows:

Bits 0,1,2,4 and 8-11 are always zero, and bit 3 is always 1. Bits 5,6 and 7 contain an "operation code" that
is used with the Write Direct instruction. The "Interrupt System Control" section in Chapter 2 of the Sigma 3
Computer Reference Manual, 90 15 92, describes the action taken with each of these codes. Bits 12-15 of wo
contain the Group Number of this interrupt. These numbers are listed in the rightmost column in Table 1, in
Chapter 2 of the Sigma 3 Computer Reference Manual.

Assuming wp contained +1200 in conjunction with a wy containing C30C as described previously, this would cause

interrupt X'10C* to be armed and enabled when the task is brought into core. This means that when the program
task is loaded into core, interrupt X'10C' would be armed and enabled (the "2" in 2 $+1200) and then triggered

How To Create a Task Control Block

93

94

(since bit 6 in 1is a 1), causing the computer to set its P register to the address contained in location X'10C!,
This address would have been stored in this location by M:LOAD, using information placed in the task's TCB by the
Overlay Loader.

The flexibility of the "operation code" fechnique for interrupt control allows the user a wide variety of interrupt
handling methods. For instance, if this example used a code of 3 (that is, if wo were +1300), the interrupt would
have been armed and disabled on loading. The Monitor would have tried to trigger it, but no action would have
occurred, However, since an’interrupt that is armed and disabled “remembers" a trigger, a different task could
enable this level, which in turn, would cause interrupt X'10C' to go "active" (fransferring control to its task) as
soon as it became the highest priority active interrupt.

You may define multiple tasks within a single root by having additional I$TCB commands subsequent to the initial
1$TCB command. Each must be followed by one or more I$LD commands to load the ROMs for that task. A I1$TCB
command may also be followed by a 13BLOCK command to specify any oplbs that may require blocking buffers in
that task.

The "temp" parameter on !1$TCB commands subsequent to the initial one is used to reserve temporary space in the
same way as on the I$ROOT card. If the "temp" is absent, a default value of 80 (X'50') is supplied by the Loader.

Since there is a heavy interface between the 1$TCB commands and C: control commands or key-ins, it is recom-
mended that you now turn to the next chapter, "How To Connect Tasks To Interrupts”.

How To Create a Task Control Block

13. HOW TO CONNECT TASKS TO INTERRUPTS

The function of linking a foreground task to its interrupt, and optionally controlling the state of the interrupt is
performed through the Monitor IC: control command or the C: operator key-in. The IC: control command and
C: operator key-in function in precisely the same way and have identical parameters. For brevity, they will be
termed "Connect" commands in the rest of this chapter. A frequent use of the Connect commands is to check out
real-time systems that use externally triggered interrupts. Once the foreground is initialized, operation of the
various tasks may be checked without the necessity of actually applying signals to the interrupt lines,

The first and mandatory parameter for a Connect command is the first core location of the task's 7C8." The second
and optional parameter is an "operation" code. This is @ number from 0-7, and if present, is used by the Monitor
in place of the code contained in bits 5, 6, and 7 or word 2 of the TCB; that is, W, on the 1$TCB command. How-
ever, the data in the TCB is not changed.

For instance, assuming a foreground task had been loaded with a 1$TCB command where w.,, was +1100, it would be
brought into core with it's interrupt disarmed. A C: key-in with a code of 2 could then béused to ARMand ENABLE
_ the inferrupt. A second C: key-in (for the same TCB) with a code of 7 would then TRIGGER the interrupt, and if
no higher-priority interrupt were ACTIVE, the task would receive control.

Note that if you request the Overlay Loader to build a TCB, but have supplied a transfer address (that is, a label
in the argument field of your END statement), M:LOAD wi!l honor this as an initialization entry point and this
address will also be used for interrupt entry. If this is not appropriate, you must alter it in your code. If the
Loader builds the TCB but no transfer address is supplied, the interrupt entry will be the first word of the program.
The Loader will output a "OLERR TA" message and set an error level of 1; however, this is only a warning message
and does not affect program execution.

"The location of the task’s TCB is the location immediately following the keyword "ORG" on a load map. See the
load map example in Chapter 6, "How To Build an Overlay Program".

How To Connect Tasks To Interrupts

95

96

14. HOW TO ATTAIN REENTRANCY IN ASSEMBLY LANGUAGE SUBROUTINES

Reentrancy in a subroutine permits the subroutine to be interrupted during its execution for one task by a higher
priority task, entered and executed by the higher priority task, and later reentered and continued for the original
task with all previous environment saved. The advantage of reentrancy, of course, is the savings in memory space
achieved by the sharing of procedural code.

Reentrancy is made possible through the use of two special hardware registers: the base register and the link register.

The base register (B) is used by reentrant routines to point to a temporary scratch area (called the "temp stack"),

that is allocated by the Loader, and is unique to each task. The base register contains an absolute core address

that is the start address of the temp stack. Note that the Sigma 2/3 instruction sef permits use of both a base re~
gister and an index register (with or without indirect addressing) which is a powerful technique for manipulating

data and address values.

The link register (L) is used in reentrancy to save the return address in all subroutine calls. Since no subroutine
area can be modified, a method for subroutine calling that uses a branch-and-store instruction counter will not
work, because it would store the return address in the subroutine area. However, with the link register as a sep-
arate register for the return address, linking is quite easy.

With the exception of the B register, all of the hardware registers can be used as a temporary scratch area in a man-
ner similar to temp stack usage.

There are two inter-dependent software parts that are responsible for providing reentrancy: the task and the reen-
trant subroutine. If the proper conditions are not met in both items, no reentrancy is possible. That is, the task is
not itself reentrant, but if it calls a reentrant subroutine and the subroutine requires more working storage than can
be provided by the general registers, then the calling task must provide a temporary storage area for the reentrant
subroutine, The reentrant subroutine will use this area as required.

When a task's interrupt occurs, the pointer to the temp stack of the interrupted task is switched by the interrupting
task via the M:SAVE Monitor service routine. This pointer (K:DYN) is set in the task's TCB to identify the temp-
orary work area for the reentrant subroutine. In order for the subroutine to get the B-register set to the unused part
of the stack, it should call M:PUSH upon entry. To release this space before the subroutine exits, it should call
M:POP. This temporary space is illustrated in Figure 51.

The address of the temp stack is in word 3 of the Task Control Block. This address can also be found in location 6
(K:BASE). The best method for using the stack for temporary storage of up to "n" words is to use the M:RES and
M:POP Monitor service routines, where the calling sequence

RCPYI PT

B *$+3

DATA n (number of cells)
DATA 0

ADRL M:RES

would save the previous value of B in the temp stack and set B to the FWA of the temporary scratch area (within the
temp stack) being allocated, and the sequence

LDA =RETURN
STA 2,,1
B M:POP

would set up the return to TEMP+2, ofter releasing the current temp storage stack and restoring the previous
value of B,

How To Attain Reentrancy in Assembly Language Subroutines

TCB-A

Code and Call (currently inactive)
Task A bl At
e) Local Data |

Temp Stack A

|
|
|
|
|
| Public Library
|
|
|
|

of
(Reentrant
TCR-C Subroutines
%
7.
Code and Call L = .
Local Data — Subroutine 3

Temp Stack C

B-Register

Figure 51. Reentrant Subroutine Calling Example

The size of the required temp stack is determined by the maximum nesting of subroutine calls, For example, assume
the following events:

Task C calls Subroutine 2, which requires 15 words of temporary space.

Subroutine 2 calls Subroutine 3, which requires 8 words of temporary space.

Task C must therefore provide a temporary stack with a minimum of 23 words.

Let's further assume that Task C has a total of 50 words of temp stack. The temp stack would then appear as illus-
trated in Figure 52 when Subroutine 3 was executing.

During the execution of Subroutine 3, the base register does not point to the beginning of the temp stack, but in-
stead, points to the beginning of space required for Subroutine 3.

If Task C had called Subroutine 3 directly instead of indirectly from Subroutine 2, the space required for Subrou-
tine 3 would have been at the top of the stack,

How To Attain Reentrancy in Assembly Language Subroutines

97

98

Temp Stack

for Task C
Word 1
Space reserved for
Subroutine 2 (fixed
Word 15 by M:PUSH)
Word 16 Space reserved by B-register during
Subroutine 3 — execution of
(8 words) Subroutine 3
Word 23
)
/Unused sp%
Word 50 ////////// /

Figure 52, Temp Stack Usage Example

In summary, then:

o Tasks that call reentrant subroutines must reserve adequate temp stack space and get this space pointed to
from the TCB, via a call to M:SAVE.

e Subroutines designed to be reentrant must call M:PUSH (or M:RES) to set the B-register and reserve space,
must use base addressing to reference this space, and must call M:POP to release this space.

Procedures for assembly language calls to reentrant FORTRAN Library routines are discussed in detail in Chapter 8,

How To Attain Reentrancy in Assembly Language Subroutines

15. HOW TO WRITE AN ASSEMBLY LANGUAGE INTERRUPT HANDLER

The sample assembly language program example illustrated in Figure 53 and 54 will output the message

KEY-IN THE DATE AND TIME BEFORE PROCESSING ANY JOBS

on the OC device when any of the following conditions are encountered:
e Each time the system is booted in from a RAD or tape.
o Whenever a frigger is initiated by either a C: control command or C: operator key~in.
o Whenever a Iname processor command is encountered, preceded by an FG operator key-in,

Figure 53 shows the source listing and required control commands and Figure 54 shows the assembled program. The
message

OLERR TA

that appears following OLOAD in Figure 53 is expected and is to be ignored.
At execution the program is loaded info memory and is armed/disarmed, enabled/disabled, and/or triggered in ac-
cordance with the specification in the Task Control Block (TCB). The TCB in this program arms and enables the

interrupt and friggers when the program is loaded in.

When the message

KEY-IN THE DATE AND TIME BEFORE PROCESSING ANY JOBS

appears on the OC device, the program has been loaded correctly,

wlb LR ETING

PAUSE REY=IN 85Y,8 T8 UNPRBTECT THE RAD
kalkis]t

FALL FsaREETINGI32sRKpK,H

LENL

ASE Ll 52%DZaRBEMISD

XsYMERL LUsGRaCRINSH)D A, BY

uer TYPE

*

* Thls FRUGRAT wlLL TYPE ML SSAGE EACH TIME THE SYSTEM]S BBBTED.

*

1YPE CLA ARG ALDR SET X REGISTER TO ARGUMENT LIST ADCR
RCUFY] Fol SET L REGISTER T8 RETURN ACDRESS
b *MIWRITE BRANCH T@ RBM MIWRITE
AL sRITEIAK BRANCH IF [/8 SUCESSFLL
KLFY FiA SET LBCATIBN IN A REGISTER
LuA xiCoCt SET ABBRT CHDE (ERCDIC) IN X KEGIST
®CFY] Pal SET L REG T8 FAREGRBUND
=} *MIABORT BRANCH T8 Ru8M ABSRT / ELSE
AR TE AR =CFY] P, SET L REG TY FBREGROUND
5 *MIEALT BRANCH T8 NHRMAL R2M EXIT

I ZEFEEEERESEAENEEEEE RS R R L 2R B R R R Y
A EEZEARE R R ANE RS RS RZEE S SS R S8 3

ARGIAUDN ARKL $+1 ADDRESS BF ARGUMENT LIST

ARG JATA x'3C05! WRITE, EBCDIC, WAJT
UATA 'eC! OPLABEL FOR BPERATIGNS CONSBLE
WATA MESSAGE ADDRESS BF MESSAGE T8 BE BUTPLT
GALA Y] LENGTH OF MESSAGE IN BYTES

Figure 53. Interrupt Handler Source Listing

How To Write An Assembly Language Interrupt Handler

99

100

(2R X2 R 2R AL RN AR SR RS EE RS RS 2R Y

MESSAGE UDAIA A11540 NEW LINE / SPACE
UATA X'15151 NEW LINE / NEW LINE
TEAT 'KEY=IN THE DATE AND TIME BEFORE PROCESSING ANY JOBS !
DALA ETITY NEW LINE / NEw LINE
22X FRTTLALTRSES R 2R R Y FE RS RTRLRE]
X;CO0L DATA ThE! ABBRT CBDE WRITE ERRBR
MIWRITE EQY X1C9t TRANSFER ADDRESS FBR RBM WRITE
M3 ABBRT EWV X'CE! TRANSFER ADDRESS F8R RBM ABORT
MIEXIT EWY X100 TRANSFER ADDRESS FBR RBM EXIT
l*“ﬁi**‘ﬁ*****Q***l*****i#**i*****#***ﬁ*&i******!*******iﬂ’“”i’*ﬁ*”f
END
EBD

PAUSE KEY=IN FG,S
ASS1uN UVSUREETING,UP
GLUAL CoF

$MS

$TCB +13112+1205
$ROGT 1C0,+3000,G8,1

SEND
XEG
EBD
FIN
Figure 53. Interrupt Handler Source Listing (cont.)
boo 04/01/71 PAGE 1
$ DEF TYPE
4 »
a e TH]S PROGRAM WILL TYPE MESSAGE EACH TIME THE SYSTEM IS BBBTED,
* »
1] 0000 C80A A TYPE LOX ARG 1ADDR SET x REGISTER T® ARGUMENY LIST AD R
[] Q001 75A1 A RCPY! P,L SET L REGISTER T8 RETURN ADDRESS
2 0002 48G9 A B *MIWRITE BRANCH T8 RBM MIWRITE
8 0003 6405 A BAZ WRITE$OK BRANCH IF 1,8 SUCESSFUL
? 0004 74F1 A RCPY PsA SET LBCATION IN A REGISTER
10 Q00% c827 A LDOX X:CoDE SET ABOBRT C8DE (gBCOIC) IN X REGIS
13 0006 75A1 A RCPY(P,L SET L. RgG T8 FBRgGROUND
18 0007 H4CE A B *MIABBRY BRANCH TB RBM ABBRT / ELSE
13 0008 75A1 A WRITEtBK RCPY] Pab SET L REG T8 FOREGROUND
1% 0009 4400 A B *MIEXTT BRANCH T8 NBRMAL RBM EXIT
19 ERBERRRBBBRRI R SRR RO ARG R R G R B RN
16 RERRRRBRRBEBRB B RNRNBN AR BN BRNNNNS
17 0004 000B R ARGIADDR ADR| sol ADDRESS BF ARGUMENT _IST
18 ooo8 3005 A ARG DATA Xt3005¢ WRITE, EBCDIC, WAIT
12 000E D6C3 A DATA 18C BPLABEL FAR BPERATIONS CONSOLE
29 000P 000F R DATA MESSAGE ADDRESS 6F MESSAGE 10 BE QUTPUY
23 0008 003A A DATA 58 LENGTH OF MESSAGE IN BYTES
28 BRERBREBRRRRBRRRNBRRDRER R RPN RO R RSN
T} 000k 1540 A MESSAGE DATA X11540" NEW LINE / SPACE
(1] 0019 1515 A DATA X115151 NEW LINE 7 NEwW LINE
2% 0013 D2Cs A TEXT 'KEY®IN THE DATE AND TIME BEFBRE PRBCESSING ANY BBS !
0017 E860 A
0013 C90S A
0014% 40E3 A
001§ c8Cs A
0016 40C4 A
0017 C1E3 A
0018 C540 A
0019 C105 A
001A Ch40 A
0018 E3CS A

Figure 54. Interrupt Handler Assembly Listing

How To Write An Assembly Language Interrupt Handler

boo 04/01/7% PAGE e

Qot¢ D4C5 A

001D 40C2 A

Q01E C5C6 A

QO01F D609 A

0029 C540 A

Qo021 D709 A

0o2g D6C3 A

0028 CSE2 A

002& E2C9 A

0028 D5C7 A

0026 40C1 A

o2y DSES A

Qoa8g 4001 A

0029 DeC2 A

00z2A E240 A
26 o028 1515 A DATA X11815" NEW LLINE , NEW LINE
27 ARRRBBRBRBER PG RE R RO RGN G RBB RN
28 002¢ E6CS5 A XIiCBDE DATA 'WE ABBRY CBDE WRITE ERRBR
23 00C9 A MIWRITE EQU XtCo! TRANSFER ADDRESS FBR RBM WRITE
30 COCE A MIABBRT EQU XtCg! TRANSFER ADDRESS FBR RBM AHBRT
33 000 A MIEXIT EQU X10g TRANSFER ADDRESS FOR RBM EXIY
kT BEREBR A BB RPN RSB R SR IR R PR R AR AN IR AR R RI R R ARR IR RTRRRAGIRAD RN ORI D R NNy B2 PEPNS
32 END

* N WARNING LINES
* NB ERRBR | NES
* ERRGR SEVERITY: 0

SIGMA 2/3 CROSS REFERENCE [ISTING
A 9

y

C 18 ARG

C 17 ARGIADOR S

U S 6 11 13
E 30 MIABOBRT 12

E 31 MIEX]T 14

E 29 MIWRITE 4

C 23 MESSAGE 20

[V} P [} 9 11 13
C 5 TYPE 1

C 13 WRITE!8K 8

C 28 Xi1Ce0t 10

U s 17

END CRBGS REFERENCE §
£T=000.72
PAUSE KEYsIN FGyS§
ASSIGN BVsGREETING,UP
oLBAD QsF
sMg
STCB +3311,+41205
$KABY $00,+3000,G8,1
SEND

BLERR TA

JOB GREETING 3B

04/01/71 0002

PAUSE KEYeIN SY,S T8 UNeFRBTECT THE RAD
RADEDIT

#ADD UPPGREETING23)sR)RsF

#END
£T=2000:3180

ASSIGN S2%S24RBM,SD

xsYmBoL |,9,G0,CR,NS,DW,B0

Figure 54, Interrupt Handler Assembly Listing (cont.)

How To Write An Assembly Language Interrupt Handler

101

MAP
OVERLAY TASK F8 ORGe3000 MLOCs30AB CBASSSFEE CSIZe0000 UMEM.2Fa2 SECT0002
ROOY ORG*3Q64 LWAv30AC LEN®QO49 TRASNBNE SEV®0000 B8VILBAD#30AC
ERRSEVes 000§
END MAP
ET«000083

XEW
04/01/71 0004 BK8000¢85,FG2000¢67, 10200000

FIN

Figure 54, Interrupt Handler Assembly Listing (cont.)

102 How To Write An Assembly Language Interrupt Handler

16. HOW TO WRITE AND EXECUTE A REAL-TIME PROGRAM

The source listings in Figures 55 and 56 illustrate the interface between two real-time task examples, The first task
calls for a checkpoint of the background, specifies the Checkpoint Complete Receiver (via the M:CKREST Monitor
service routine and is used similarly to the AIO Receiver), and then exits itself. The task is reentered at channel
end. The Checkpoint Complete Receiver then triggers a second, higher priority task to restart the background.

The deck structure given in Figure 57 would load and cause execution of the two real-time tasks illusirated in
Figures 55 and 56.

When both tasks have successfully executed, the message

CKPOINT SPECIFIES AIO RECEIVER
11BKG RESTART
will be output on the operator's console.
E00 00501 04/01/71 PAGE 1
1 REF M2 CKREST,MIEXIT,MIWRITE
4 0001 A P EQU 1
K] 0002 A L EQU 2
4 0000 C8OB A START LDX *AA CHECKPBINT BACKGROUND
& 0001 75A1 A RCPY1 PaL
A 0002 4COA A B8 M:CKREST
7 0003 6402 A BAZ s+2
] 0004 6FFF A BAN se1
Q FRERBERRERRR P REER RSN
10 PRNBERREBRRERBRREB AR
11 0005 4C08 A B MIEXIT
12 HERERBRBRERBRREERE RSN
13 FRRREEDPERERNRDER D RAR
1a 0006 COO0 A AA DATA X1C000"
15 0007 €008 R DATA AlSREC Al8 RECEIVER ADDRESS
16 *
17 0008 R806 A AIBREC LDA xX13000" Al® RECEIVER IS EMTERED AT THE
1R co09 ©Co6 A WD Xt17051¢ LEVEL OF THE 1/8 INTERRUPT TASK
19 000A 7492 A RCPY LsP TRIGGER INTERRUST +110(272)
20 YT TR T YR Y T
21 ARPRR R R BB RAE BB RN
2 0000 R END START
0008 0006 R
000C 0000 &
900D Q000 E
00CE 80CO A
000F 1705 A
Figure 55. Real-Time Task Example, Checkpoint Call and Exit (Task 1)
1 0001 A P EQU 1
P 0002 A L EQu 2
2 REF MIEXIT,MICKREST,MIWRITE)
4 0000 C81B A START LDX =8 WRITE BUT MESSAGE
5 0001 75A1 A RCPY1 Pol IN EBCIDIC
I3 o002 4C1A A B tWRITE
7 22222 R 22X 28220
R e L IR eIy
9 0003 Ca1A A LDX zAA RESTART BACKGD AT THE LEVEL
10 0004 75Al & RCPYI 6F THE RoM CONTROL TASK
11 0005 4C19 A B MiCKREST
1? *
13 00086 4C19 A B8 MIEXIT
14 (2242 L AR 2 22 XA LR S 2l
15 R A I YT I I T 2
16 Q007 0000 A AA DATA 0
17 HH NN RN NN

Figure 56. Real-Time Task Example, Restart Background (Task 2)

How To Write and Execute a Real-Time Program

103

104

2222222222222 L LS

1R
19 0008 3005 A BB DATA X'30081
20 0009 D6C3 A DATA reC!
21 000A 000C R ADRL BUFFER
2» 0008 001C A DATA 28
23 000C 40C3 A BUFFER TEXT ' CKPT SPECIFIED A18 RECEIVER !
000D 02D7 A
0COE E340 A
000F E2D7 A
0010 C5C3 A
ooll C9C6 A
0012 €9C5 &
6013 C440 A
0014 ciC9 A
0015 D640 A
0016 D9ICS A
0017 C3C5 a
0018 C9ES A
0019 C5D9 A
001A 4040 A
24 22 X222 TS 2R R 2
25 (Z3ZI 2222 RIS R 23
24 0000 R END STARY
0018 0008 R
001C 0000 E
001D 0007 R
001E 0000 E
001F 0000 E
Figure 56. Real-Time Task Example, Restart Background (Task 2) (cont.)
[1EOD
~|XSYMBOL deck (Task 2)
[IXsYMBOL LO, GO
[1JOBC \W
[teoD
3——{1#ADD_UP,AIO, 2,R,R, F N\
3——[IfADD UP, CKPTAIO, 2,R, R, F \w
{IRADEDIT AN
2 [IPAUSE KEY-IN SY,S

1———={IPAUSE KEY-IN FG,S

[1ATTEND

1JOB

||

Figure 57. Deck Example For Loading and Executing Real-Time Tasks

How To Write and Execute a Real-Time Program

[1sro0T |, +2600, GO, 1 AN
7—={1$TCB +1311, +1205
[toLoap o,F

IASSIGN OV=AIO, UP -

|[XSYMBOL deck (Task 1)
[1xsymBoL Lo, Go
[1uoBC
[1xeQ
[tEOD
lrsms
6——— ISROOT , 42700, GO, 1
5———={1$TCB +0110, +1205

{toLoAD o,F
4——={ IASSIGN OV=CKPTAIO, UP

where the flagged control commands have the relevance and meaning given below:
1. Permits loading into the foreground.
2. Permits modifications to the RAD area.

3. Creates two files: AIO and CKPTAIO. The files are to be two records (sectors) long,
random access, resident foreground, and have RBM write protection.

4. Core image output by the Overlay Loader goes directly on file CKPTAIO.

5. Task is connected to interrupt +0110 (or 2721 in decimal) in external group 5. The interrupt is
armed and enabled but is not to be triggered when loaded into memory for execution.

6. Starting address is +2700 (temp stack FWA).

7. Task is connected to interrupt +0111 (2731(in decimal) in external group 5. The interrupt is
armed and enabled, and is fo be triggered when loaded into memory for execution.

Figure 57. Deck Example for Loading and Executing Real-Time Tasks (cont.)

How To Write and Execute a Real-Time Program

105

When designing and coding your own real-time programs, there is a cardinal rule to be remembered. It was touched
upon in previous chapters but is so important and fundemental to RBM design that it deserves added emphasis:

o Each and every foreground task must be connected to a hardware priority interrupt and therefore will exe-
cute if and only if its interrupt level is ACTIVE. In particular, a foreground task must not continue exe-
cution if the interrupt level is removed from ACTIVE status for any reason.

The single exception to this rule is during the initialization phase of a foreground program, which is run at the
RBM Control Task level. (Exit from initialization must return to the RBM Control Task.) It is assumed that initiali-

zation activity is of short duration.

The priority level of user foreground tasks must be above the priority level of the RBM Control Task and below the
1/O priority level if any 1/O is to be performed by the user task.

106 How To Write and Execute a Real-Time Program

17. HOW TO CREATE A FORTRAN REAL-TIME SYSTEM

Using ANS FORTRAN 1V, you have the ability to construct a Sigma 2/3 real-time system that may be entirely
written in FORTRAN if desired.

REENTRANCY

To effectively use a FORTRAN program in a real-time environment, it is necessary to structure the subprograms so
that they are reentrant. The Main program and TASK Main programs are, as noted elsewhere, not reentrant; how-
ever, any subroutine that may be reached from the Main program and a TASK Main program or two TASK Main
programs must be reentrant if the system is to function properly. As indicated in Chapters 13 and 15, Sigma 2/3
programs achieve reentrancy through separation of program and data and the use of a dynamic temp stack allocated
by the Overly Loader.

The standard object code output by the ANS FORTRAN compiler is designed so that it may be transformed into reen-
trant subprograms. Such a transformation is achieved through the following requirements:

— e The subprogram must use M:RES, M:MPUSH, M:PUSHC, or M:PUSHK for its storage allocation,
e The temp stack must be allocated at the very end of the subprogram.
e The temp stack must not contain any preset data.
o The program area must not be modified during execution.

When made reentrant, a subprogram is set so that it uses the dynamic temp (see the "Public Library FORTRAN Rou-
tines" subsection later in this chapter).

TASKS

The key to the generation of a real-time FORTRAN system is the TASK Main program, which is a Main program
having a TASK statement as its first statement, The TASK statement provides a means of naming (other than with
F:MAIN) a Main program so that it may be used by the CONNECT subroutine. Thus, TASK Main programs are the
interrupt entry points used in constructing a real-time FORTRAN system having more than one entry point. Note
that tasks themselves are not reentrant; however, they provide temporary space fo any reentrant subprograms and to
Monitor service routines.

BASIC STRUCTURE

An example of a possible real-time FORTRAN system is shown in the schematic given in Figure 58. In the example,
‘the Main program provides the initialization for the rest of the real-time system. Initial entry would be to the Main
program, which would then connect the tasks ALPHA and BETA,

Int t A >
nrerrup Main Program U
(optional) B
R
@)
Interrupt B Task ALPHA - U
T
1
N
Interrupt C Task BETA E
S

Figure 58. Sample Real-Time FORTRAN System Schematic

How To Create a FORTRAN Real-Time System

107

108

If the main program is to be connected to an interrupt, it will be necessary to have the Main program alter a preset
variable so as to flag the fact that the later entries are not to do initialization.

Figure 59 shows the deck setup that might be used to construct the schematic sample in Figure 58. The first 1$TCB
card instructs the Overlay Loader to initiate the root segment through the Wi Wo specification,

The ISROOQOT card tells the Loader the size of the Main program's temp stack (f]) and also where to find the Main
program and the subroutines BI,

The second 1$TCB card sets the Loader to expect a TASK Main program (t2) which will be task ALPHA, and also
causes the Loader to allocate temp stack space for the task. The task module with its ! $BLD command (ALPHA deck)
must immediately follow the 1$TCB card; otherwise the CONNECT subroutine will malfunction. The use of 1$TCB
commands is further discussed in Chapter 12 of this manual.

INITIALIZATION

In initialization, you have the option of allowing the Overlay Loader to do all the work (thus avoiding the problem
of determining whether the Main program entry is really the initial entry), or you can use the CONNECT subroutine
in an initialization routine,

If the Overlay Loader is to do the initialization, you must then specify a wy, wp on the !$TCB cards (see the I$TCB
command in the Overlay Loader chapter in the RBM Reference Manual, and "How To Create Task Control Blocks"

in this manual).

If the Main program is to perform an initialization function, then only the Main program need have a Wi W, field

entry.

[1$1D BI, 1
I$TCB ,, 13

[15D B1, 1

EEEE— N |
ITCB ,,f2 \

Subroutines

Main Program

l=—={1sro0T 1,,8I
—-»[!$TCB w1, w2
10LOAD

Figure 59. Overlay Loader Controls For Sample Real-Time FORTRAN System

Initialization

You could use a mixture of these two approaches if desired. A Main program and one or more tasks might be
initiated by the Loader. Then, at the occurrence of some specified set of conditions, other tasks could be con-
nected to their respective interrupts,

SUBROUTINE SHARING

Caution must be exercised if subroutines could possibly be shared by two or more interrupts after activation. Where
this condition exists, you must be able to ensure that a subroutine is either in the Public Library or that it uses only
dynamic storage (directly or indirectly).

PUBLIC LIBRARY FORTRAN ROUTINES

Since all routines in the FORTRAN Library fulfill the requirements for conversion to a reentrant subprogram, it is
possible to convert a FORTRAN subroutine into a Public Library routine, As previously stated, a routine to be con-
verted must use M:RES, M:PUSH, M:PUSHC, or M:PUSHK for storage allocation, and the static temp stack must be
empty and allocated at the end of the program.

With these conditions fulfilled, the Overlay Loader can be used to convert a FORTRAN routine to a Public Library
version. In general, the conversion involves altering the storage allocation calling sequence so that it requests
dynamic temp and by stripping the static temp stack from the end of the program. The chapter "How To Write Reen-
trant Subroutines In Assembly Language" in this Manual and the Overlay Loader chapter in the RBM Reference Man-
val give more specific details.

Subroutine Sharing/Public Library FORTRAN Routines

109

110

18. HOW TO DEBUG ASSEMBLY LANGUAGE PROGRAMS

The most useful features of the RBM Debug package are conditional dumps and the capability to insert code. Both
of these features require a region of memory that we will call the "insertion block".

HOW TO DEFINE AN INSERTION BLOCK

The insertion block is defined with the Debug command:

D start, end

and must be given before any code insertions or snapshots may be specified, The most convenient way to define the
insertion block limits is to initiate program execution with an !XED control command that will cause the message

HDKEYIN

to be output on the OC device after the program is loaded into core. Af this point, you can type in the insertion
block definition, type in the conditional snapshots and/or code insertions, and then begin execution.

HOW TO INSERT SNAPSHOTS AND CODE

The listing in Figure 60 is an example of a background program using a conditional snapshot and two code insertions.

E0O 09:04 10/22/71 PAGE 1
1 REF MIREADIMIWRITE)MITERM
2 0000 €839 A START LDx »INLIST READ
3 0001 75A1 A RCPY! 102 FREM
4 0002 4C38 A B MiREAD ec
5 0003 €838 A WRITE LDX sBUTLIST WRITE
A 0004 75A1 A RCPY! 1,2 8N
7 0005 4C37 A 8 MIWRITE ec
] 0006 75A1 A STEP RCPY1 1,2 TERMINATE
9 0007 4C36 A 8 MITERM PROGRAM
10 0008 3006 A INLIST DATA X13006 READ AUTB, WAIT, STD ERR RECBVERY
11 0009 D6C3 A DATA -1 BPERATIONAL LABEL
12 000A 0011 R DATA INBUFF BUFFER ADDRESS
13 0008 0050 A DATA 80 BYTE COUNT
14 cooC 3005 A BUTLIST DaATaA X13005¢ WRITE EBCDIC, WAIT, STD ERR RECBVERY
18 000D D6eC3 A DATA rect
14 000E 0010 R DaTaA BUTBUFF
17 000F 0050 A DATA 80
1R 0olo FOOO A BUTBUFF DaTa X1F000 i DBUBLE SPACE FBRMAT CBDE & NULL
19 ooit INBUFF RES LY
20 0000 R END STARY
0039 0008 R
003A 0000 E
0038 000C R
003C 0000 E
003D 0000 E

N8 ERROR LINES
) ERRBR SEVERITY: 0

ET200Q¢23

8LOAD
sMS
sROBT +110042G8
SEND

Figure 60. Example, Background Conditional Snapshot With Two Code Insertions

How To Debug Assembly Language Programs

MAP
BVERLAY TASK BA 0ORGa3Fp0 HLBCE503D CBASeF000 CS1Zw0000 UMEMe9FC2 SECTs0Q002
RBBTY ORGs50p00 LWA®S503D LEN®=QQ3E TRA=S000 SEV#0000 BVILBADsNBNE
ERRSEvVs 0000
END MAP

ET=000.27

MgSSAGg WHEN DKgYIN 1S BUTPUT, TYPg IN 1CY FOLLOWED BY NgW LINg

PAUSE SET PROTECTY SWITCH T8 '0FFt!, INTERRUPT, KEYIN 18!

XFD
DKEYIN

c

D 4000,%000

S 5003/RA<>#0/'ERRBR',RR

18 %5003,001C,6204,RCPYIPL,4C0145007
1R 5006, 4045000

8

ET#000e58

Figure 60. Example, Background Conditional Snapshot With Two Code Insertions (cont.)

The example in Figure 60 reads one 80-character record from the OC device, outputs the same record on the OC
device, and then terminates.

The I$ROOT card causes the program to be loaded for execution at X'5000'. Since the beginning of background is
at X'3F00" in the system used for this example, the region from X'3F00' to X'3FFF' is used as dynamic temp space
for the program,

When the ! IDKEYIN message is output, the operator types in *C", which causes Debug to read further commands
from the Debug DI device.

The S (snapshot) command tests for register A being equal to the value 0, following the call to M:READ. If A does
not equal zero, the message

ERROR

is output on the Debug DO device, followed by a hexadecimal dump of the register contents,

The IB (Insert Before) command inserts a test for an EOF condition (A=3) before the snapshot. The symbolic equiva-
lent of the inserted code is

cp =3
BNC $+3

B *$+1 *$+1
DATA STOP

The IR (Insert Replace) command inserts an unconditional branch back to START, following the call to M:WRITE.
The symbolic equivalent of the inserted code is

B START

How To Insert Snapshots and Code

m

112

HOW TO DEBUG A FOREGROUND PROGRAM

The use of Debug with a foreground program involves the use of a high-level interrupt for use by RBM while the
foreground program is active. The background program example given previously in Figure 60 can be made to
operate in the foreground as shown in Figure 61,

The IROOT card shown in Figure 61 causes the program to be loaded so that the label START is at location X'3400',
The start of the program is computed as

TCB address = exloc (X'3300') + temp (X'E5')
START = TCB address (X'33E5') + TCB size (X'1B')

Since the default temp size is X'50', the !$ROOT command could also be

1SROOT , 43395, GO

to cause the label START to be on a convenient boundary., The TCB would still be at X'33E5'.

EOO 00300 09/22/74 PAGE 1
1 JDNTY 1PROG!
2 REF MIREAD,MIWNRITE, MIEX]T
3 0000 C839 A STARY LOX eINLIST READ
3 0001 78A1 A RCPY1 1,2 FROM
] 0002 4C38 A B MIREAD oc
[0003 C838 A WRITE LDx sBUTLIST WRITE
7 0004 75A1 A RCPY! 1s2 N
3 0005 4C37 A B M WRITE ec
9 0006 75A1 A STOP RCPY! 1,2 TERMINATE
10 0007 4C36 A B MIEXIT TASK
11 0008 3006 A INLIBT DATA X13006! READ AUTS, WAIT, STD ERR RECOVERY
12 0009 D6C3 A DaTaA 18C! OPERATIGNAL LABEL
13 000A 0011 R DATA INBUFF BUFFER ADDRESS
14 0008 0050 A DATA 80 BYTE COUNT
18 000C 3005 A BUTLIST DATA X13005¢ WRITE EBCDIC, WAIT, STD ERR RECOVERY
16 0000 D6C3 A DATA rec
17 000E 0010 R DATA BUTBUFF
i8 000F 0050 A DATA 80
19 0010 FOO0 A OUTBUFF DATA X+FOOQ1 OBUBLE SPACE FBRMAT CODE & NULL
a0 001l INBUFF RES 40
21 0000 R END START
0039 0008 R
003A 0000 E
0038 000C R
003C 0000 E
0030 0000 E
» NO ERROR LINES
- ERRBR SEVERITY! O
ETs000e1?
SLEBAD QsFssD
sMS
sTCB +1111,41205 INTERRUPT 111, ARM & ENABLE
sREBT 243500, G8
SEND

Figure 61. Foreground Conditional Snapshot With Two Code Insertions

How To Debug a Foreground Program

MAP
BVERLAY TASK FO® ORG¢3500 HLOBCa35A8 CBASR3EEE CSIZs0000 UMEMe0945 SECT0002
RAGBY ORGe358n LWA®35A8 LEN®QQ59 TRASNGNE SEV®0000 OVILOADSNANE
ERRSEVe 0000
END MAP

ET#000¢1%

PAUSE KEYIN FGsg
MgSSAGE WHEN DKEYIN IS BUTPUT, TYPE IN 1€t FOLLOWED BY NEW LINE

XED

DKEYIN

[

Ds110

D3200,3%00

S $PRBG+3/RA<OHQ/, 'ERROR!,RR

{B $PR8G+3,D01C,6204,RCPYIPL,4C01,8PRBG+7
IR $PROG+6, #QuSPROO

B

C: +3550,7

Figure 61. Foreground Conditional Snapshot With Two Code Insertions (cont.)

HOW TO USE $NAME AND @NAME

The Debug package provides two methods of referring to program locations by name rather than by hexadecimal
value. Both methods involve the use of an arbitrary symbol of up to eight alphanumeric characters preceded by a
$ or by an @ sign. Examples:

$PROGRAM
$SEGI
@START

@s

REQUIREMENTS FOR $NAME
1. The source program must include an IDNT statement., Example:
IDNT 'PROGRAM!

2. The IOLOAD command used to load the program must contain the character Das the fourth parameter. Example:

IOLOAD 0, F,,D

3. The Debug insertion block must be large enpugh to contain a blocking buffer for reading from the opera-
tional label ID. The blocking buffer is allocated as the last K:BLOCK words of the insertion blocks, where
K:BLOCK words of the insertion blocks have the value 180 or 512. This value is contained in location
X'EE' in all RBM systems from Version DOO upward. If snapshots or insertions are to be made, the insertion
block must be large enough to contain the blocking buffer and the additional space required for the inser-
tions or snapshots,

The example in Figure 62 shows how the SNAME feature can be used with a foreground program.

How To Use $NAME and @NAME

113

114

EOO 00301 09/22/71 PAGE
1 RgF MIREAD,MIWR]ITE, MIEXIT
2 0000 C839 A START LDX ®INLIST READ
3 0001 75A1 A RCPY1 1,2 FROM
4 0002 4C38 A B MIREAD ec
5 0003 C838 A WRITE LDX wBUTLIST WRITE
. 0004 75A1 A RCPYI 1,2 oN
7 0008 4C37 A B MIWRITE oc
] 0006 75A1 A STOP RCPY1 1,2 TERMINATE
L} 0007 4C36 A B MIEXIT TASK
10 0008 3006 A INLIST DaATA X13006! READ AUTB, WAIT, STD ERR RECOVERY
11 0009 D&C3 DATA 1eC? GPERATIONAL LABEL
12 000A 0011 R DATA INBUFF BUFFER ADDRESS
13 0008 0050 A DATA 80 BYTE CBUNT
16 000C 3005 A OUTLIST DATa X130051 WRITE EBCDIC, WAIT, STD ERR REC®VERY
18 000D D6C3 A DATA rec!
14 000E 0010 R DATA BUTBUFF
17 000F 0050 A DATA 80
18 0010 FOOO A BUYBUFF DATA X1F000" 0OUBLE SPACE FBRMAT CBDE & NULL
19 ootl INBUFF RES 40
20 0000 R END START
0039 0008 R
003A 0000 £
0038 000C R
003C 0000 €
0030 0000 €
N8 ERROR LINES
. ERR®R SEVERITY: 0o
ET#000410
8LBAD O,F
sMS
s7CB +1111,%1205 INTERRUPT 111, ARM § ENABLE
SREBT +ES,+3300,G0
SEND
MAP
BVERLAY TASK F8 @RG43300 HLOCs343D CBASa3EEE CS12s0000 UMEMsQABO SECTs0002
ROOT ORGe33IES LWA#343D LEN®Q0S9 TRASNONE SEV=0000 OVILBAD=NENE
ERRSEVs 0000
END MAP
ETs000413
PaUSE KEYIN FGsS

Mg SSAGe WHEN

XED
OKEYIN
c

Ds110

D 3200.3300

$ 3403/RA<C>#0/'ERROR',RR

18 3403,001C,6204.RCPYIPL,4C0123407
IR 3406,403400

8

DKEYIN 1S BUTPUT, TYPE IN 1C1 FOLLBWED BY NEW LINg

C: +33E6,7

TRIGGER INTERRUPT

Figure 62. Foreground Debug Example Using $NAME

How To Use $NAME and @NAME

REQUIREMENTS FOR @NAME

When it is desirable to be able to refer to locations within a program, the use of a Debug symbol table is required.
The symbol table may be assembled into the program or it may be constructed in an unused area of core with Debug
Modify commands. Use of the @NAME facility allows you to write snapshots for subroutine entry or exit points, to

simulate input values, etc., for programs being assembled and executed within the same job.

The structure of the Debug symbol table is

< <
c c,
Cs Ce
¢ g
Valuve
0

Symbol name, left-justified and padded with blanks
to a total of 8 characters.

The location value to be used.

Indicates end of table.

The Debug G command is used to define the start of the symbol table. The listing in Figure 63 is an example of

using @NAME with a background program.

E00 00301 09/22/71 PAGE 1
1 DgfF SYMTAB
2 REF MIREADIMIWRITESMITERM
3 0000 E2E3 A SYMTAB TEXT tSTARY '
0001 C109 A
0002 E340 A
0003 4040 A
o 000& 0010 R DaTA STARY
s 0005 E640 A TEXT "W '
0006 4040 A
0007 4040 A
0008 4040 A
. 0009 Q013 R DATA NRIT;
? 000A E2E3 A TEXT 1578 '
0008 D6D? A
000C 4040 A
0000 4040 A
) 000E 0016 R DATA ST8P
9 000F 0000 A DATA Q
10 0010 C839 A START LDOX sINLISY READ
11 o011 75A1 A RCPY! 1,2 FREM
12 ool2 4C38 A B8 MIREAD 8cC
13 0013 C838 A WRITE LDoX =0UTLIST WRITE
[0014 75A1 A RCPY} 1,2 oN
15 0015 4C37 A 8 MIWRITE ec
16 0016 75A1 A STEP RCPY! 1,2 TERMINATE
17 0017 4C36 A B MITERM PRBGRAM
14 0018 3006 A INLIST DATA X130061 READ AUT®, WAIT, STD ERR RECBVERY
19 oo19 D6C3 A DATA rece OPERATIONAL LABEL
20 001A 0021 R Data INBUFF BUFFER APDRESS
21 0018 0050 A DATA 80 BYTE COUNT
22 001C 3005 A BUTLIST DATaA X13005! WRITE EBCDIC, WAIT, STD ERR RECOVERY
23 0010 D6C3 A DATA 18C
26 001E 0020 R DATA BUTBUFF
as 003F 0050 A DATA 80
Figure 63. Background Debug Example Using @NAME

How To Use $NAME and @NAME

115

116

EOO

00801 09/22/71 PAGE

26 0020 FOO0 A OUTBUFF DaTa X1F000 " DOUBLE sPaACE FBRMaT CBDE & NULL
27 [oJo-3 INBUFF RES 40
28 0040 R END START
0049 0018 R
006A 0000 €
0048 004C R
004C 0000 E
0040 0000 E
* N8 ERRBR LINES
L ERRBR SEVERITY: 0
ETe000013
SLOAD
oML
SRO8T +11004,GH
SEND
MAP

BVERLAY TASK BA BRGa3FQ0 HLBCsSO4D CBASsF000 CSIZs0000 UMEMeSFB2 SECT»0002

DEF
DEF
PEF
DEF
DEF
DEF
DefF
OEF
DEF
DEF
DEF
REF
QEF
DEF
DEF
DEF
OEF
OEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
OEF
DEF
DEF

R8T ©ORGs5000

M3FSAVE
DIKEY
D3CARD
DISNAP
MISAVE
MIEXIT
MIIBEX
MIREAD
MIWRITE
MICTRL
MITERM
MIDATIME
M3ABBRT
MIHEXIN
M3 INHEX
MICKREST
M3LBAD
M38PEN
MICLOSE
MIDKEYS
MINALY
M$SEGLD
MIDEF INE
M{ASSIGN
MIOPFILE
MiPaP
MIRES
M{DYN
MIRSYP
MiDOW
Micec

LWARS04D LENSQOE

DEF SYMTAB 1

ERRSEVs 0000

END MAP

ET«000+20

0470
2748
27aC
27AD
27A6
27A7
27AE
2780
2784
2782
2784
2783
2785
2786
2787
2788
27A8
2789
27BA
2788
278C
27BD
278BE
278F
27¢co
27C1
27C2
27C3
27A9
27AA
27AF

TRAS5010 SEV=0000 @ViLeADsNBNE

$000

PAUSE SET PROTECY SWITCH T® 'OFfF', INTERRUPT, KEYIN 'S!
DKEYIN IS BUTPUT, TYPE IN 1C' pOLLOBWED BY NEw LINE

MESSAGE WHEN

XED
DKEYIN

[
D 4000,%5000
G5000

§ BW/RA<>#0/4+'ERRBR',RR
18 8wW.001Cs6204sRCPYIPL,4C01,3STOP+y
IR BSTBP, 40#3START
B

ET»000¢50
FIN

Figure 63. Background Debug Example Using @NAME (cont.)

How To Use $NAME and @NAME

19. HOW TO ASSIGN AND USE DEVICE OPERATIONAL LABELS

Physical devices are normally assigned at SYSGEN to device file numbers (DFNs). However, at installations where
relatively large numbers of personnel submit jobs on a somewhat irregular basis, it is highly useful to permanently
assign device mnemonic operational labels to hard-to-remember DFNs. This is particularly true when large numbers
of Utility jobs are submitted, since the Utility processor works only with operational labels.

For instance, a nonprofessional programmer would find it much easier to use

KASSIGN BO=MO

instead of the standard DFN assignment of

/!ASSIGN BO=10

for a temporary assignment of binary output to a magnetic tape unit.

Or again, the nonprofessional programmer submitting a Utility job could assign (for instance)

/!ASSIGN UI=CR

instead of a "normal” DFN assignment of

/!ASSIGN UI=3

to read in his input, with much less possibility of an incorrect assignment.

When permanently assigning DFNs to operationc! labels at SYSGEN, the oplabels should convey os much mnemonic
information as possible. The following list, however, is suggestive only:

Typical Physical Suggested
DFN Device Mnemonic Oplabel
1 Keyboard/Printer KP
2 Line Printer LP
3 Card Reader CR
4 Card Punch CP
5 Paper Tape Reader PR
6 Paper Tape Reader pp
10 Magnetic Tape Unit 0 MO
Tn Magnetic Tape Unit n Mn

The assignment of DFNs to device mnemonic operational labels takes place during the SYSGEN assignment of the
background operational labels (see "BCKG. OP. LBL" output message in the SYSGEN Input Options and Parameters
table in the System Generation chapter of the RBM Reference Manual).

How To Assign and Use Device Operational Labels 117

Assuming that the card reader is assigned DFN3, the permanent SYSGEN assignments would appear as

SI=3
ul=3
CR=3

with corresponding device mnemonic operational labels for other DFN assignments.

118 How To Assign and Use Device Operational Labels

20. HOW TO PATCH RBM

RBM can be patched either temporarily or permanently through use of the RBM Hex Corrector. Whether the patch
is temporary or permanent is determined by the manner in which the Hex Corrector is activated.

A temporary patch means that the copy of RBM located on the RAD is not altered, and this is achieved by activating
the Hex corrector via a 'HEX control command or an "H" operator key-in.

A permanent patch means that the RAD copy of RBM is altered, and therefore the changes will remain in effect for
all future boots of the system from the RAD. Permanent changes are effected through activating the Hex Corrector
by setting DATA switch 1 when RBM is booted in. By using the two methods in conjunction, you can check
out patches on a temporary basis and when satisfied that they are correct, make the patches permanent.

When the Hex Corrector has been activated by either one of the two methods described above, it will read records
from the CC operational label and write records on the DO operational label. The records read in are either bias
or corrector records.

Bias records have the form

bbbb
" ID{;’;\(} [*Comments]
where
bbbb is a hexadecimal number.

PA represents the RBM Patch area defined at SYSGEN.

XX is an RBM overlay identifier (for example, 41 is the Hex Corrector).

Corrector records have the form

aaga ccecy ceeey ... Ceec,. .. ceee [(*comments]
where
aaaa is the hex location where the corrections will go. (If a bias card has been encountered, aaaa will be
added fo it to determine the location of the patches.)
ccee, is the hex correction to be inserted at the location aaaa + bias + i. The hex correction cccc; may also

also be of the form Rccee; which means the value to be stored is ccce + bias, or it may be of the form
Pccecc; which means the value to be stored is cccc; + bias of the RBM Patch area.

An IEOD terminates the Hex Corrector's input.

Figure 64 shows sample input to the Hex Corrector.

How To Patch RBM

119

[1e0D \
[0030 4CO1 PO0OT *B PA+1 AN

[+ID41 *HEX CORRECTOR AN
| 0010 4co1 10FF* *B 1OFF AN
t [0001 4C01 RO0T0 *B PA+10 AN
+IDPA *RBM PATCH AREA AN
||

fThe first and last cells of the RBM Patch area should not be used for corrections, since the first contains the
length of the Patch area and the last contains the number of temporary RBM overlay patches. Each temporary
overlay patch takes three Patch area words (taken from the top of the Patch area down).

Figure 64. Hex Correction Input Example

120 How To Patch RBM

21. HOW TO SAVE AND RESTORE AN RBM SYSTEM

The RAD Editor can be used to save and restore an RBM system without the necessity of going through a complete
SYSGEN. Two methods are available for saving the RBM system files: rebootable save and file save.

HOW TO CREATE A REBOOTABLE SAVE TAPE

The following control command sequence

| 1#END \
—— 1#SAVE

| 1RADEDIT \
[1REWIND BO AN

1 IASSIGN BO=T0 N
| 1PAUSE MOUNT 1FST SAVE TP ON UNIT #0 \
1JOB \ ||
||
||
-

. . . .t
will generate a rebootable save tape on magnetic tape that contains the entire RBM system.

Note that the "T0" device operational label used on the IASSIGN command instead of a standard device file num-
ber (DFN) is an option that must be defined at SYSGEN (see Chapter 19).

The RBM areas contained on the rebootable save tape may be restored in their entirety by performing a bootstrap op-
eration with the magnetic tape, or may be selectively restored via the RAD Editor !#RESTORE command.

BOOTING AN RBM SAVE TAPE

When an RBM save tape is bootstrap loaded via the hardware load procedure, the message

RESTORING VERSION XX OF mm/DD/yy HRMN

is output on the keyboard/printer.
where
XX is the version of the RBM system.

mm/DD/yy HRMN is the date and time the save tape was created.

"If no parameter follows 1#SAVE, the RAD Editor will save all areas currently known to RBM except CP (Check-
point) and BT (Background Temp).

How To Save and Restore An RBM System 121

122

As each new area is encountered on the save tape, the message

RESTORING AR TO DN

is output on the keyboard printer

where
AR is the area mnemonic.
DN is the device number to contain the area.

If an area is being restored to a disk pack, the first occurrence of such an area will cause the following message to
be output:

IDLE, RUN TO WRITE

If it is permissible to write on the indicated device, move the COMPUTE switch to IDLE and then back to RUN.
This measure is intended fo prevent inadvertent destruction of information on disk packs.

If an 1/O error occurs, the program will output an appropriate message and retry the operation. If the error condi-
tion persists, the operator may abort the restoration of the area currently being restored by pressing the Control
Panel INTERRUPT switch. This will cause the program to skip to the next area on the tape.

When all areas have been restored (or the logical end of tape is encountered), the program will unload the input
tape and execute the RBM bootstrap.

SELECTIVELY RESTORING AREAS FROM A REBOOTABLE SAVE TAPE

The control command sequence in the example

| 1#END AN

——{ I#RESTORE UP, UD, UL \
[IRADEDIT \
[1PRTCTD AREAS \
——— IPAUSE KEYIN SY, S IF RESTORING TO, ; AN
[1ASSIGN BI=TO AN
1JOB \

will restore the User Processor, User Data, and User Library areas from a magnetic tape that was generated as de-
scribed previously.

The RAD Editor restores the selected areas to their currently allocated regions, which must be on the same device as
they were at the time of the save. However, the areas being restored need not be to the same physical region of
the device. If the BOT of the area being restored is different from the BOT of the current allocation for that area,
the restore will proceed normally and the area file directory will be updated to reflect the new file positions. If
the area being restored contains nonzero data past the EQT of the current allocation, an EOT message will be out-
put and the area will be truncated to fit the current allocation. In this case, the updated file directory may con-
tain files that appear beyond the area EOT; these files should be deleted.

How To Create a Rebootable Save Tape

Note that selective restoration may not be used to restore the SP or SD areas. The bootstrap operation must be
used if the SP or SD areas are to be restored.

HOW TO SAVE RBM SYSTEM FILES

If the RAD Editor |#SAVE command is used with the keyword "FILE", the files indicated by the remainder of the
parameters are saved on the BO device, which may be a magnetic tape, a paper tape punch, or a card punch.

Each file is identified by its area mnemonic and file name, together with sufficient information to restore the file
to the area from which it was saved. The example

[1#EnD AN
| FiLEr, FiLE2 AN

| 1#SAVE FILE, UP, UD, FILE1, FILE2, UL, D1, ; \
| 1rADEDIT \

1JOB \

will cause the following files to be saved on the current BO device assignment:

‘Up all
ubD FILE1,FILE2
UL all
D1 FILE1,FILE2

RESTORING RBM SYSTEM FILES

The RAD Editor |#RESTORE command is used to restore files previously saved via a !#SAVE command. For example,

if the commands [oD \
| 1#RESTORE UP, UD AN

[1rADEDIT
1JOB \\

were given with the output from the previous |#SAVE example being read from the Bl device, the following files
would be restored:

Area Files
UP All that existed at the time of the save would be added to current area contents.
ubD FILE1 and FILE2 would be added to current area contents.

In this method of restoring files, the file name is added to the area if it does not already exist; otherwise, the cur-
rent content of the file is replaced by that from BI.

How To Save RBM System Files 123

READER COMMENT FORM

Xerox Data Systems

XEROX.

We would appreciate your comments and suggestions for improving this publication.

Publication No. Rev. Letter [Title

Current Date

How did you use this publication?

Is the material presented effectively?

O Learning O Installing O Operating O Fully covered J well illustrated
[Reference O Maintaining O sales O clear [well organized
What is your overall rating of this publication? What is your occupation?

O Very good J Fair O Very poor

0O Good J Poor

Your other comments may be entered here. Please be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

Thank you for your interest.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A.

Your name and return address.

2190(5/71) Xerox Data Systems

STAPLE

STAPLE

FIRST CLASS
PERMIT NO. 229
EL SEGUNDO, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
El Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

CUT ALONG LINE

Xerox Data Systems

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

oA

xeroX@®

XEROX® is a trademark of XEROX CORPORATION.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	replyA
	replyB
	xBack

